Advertisement

Rarefaction wave and gravitational equilibrium in a two-phase liquid-vapor medium

  • N. A. Inogamov
  • S. I. Anisimov
  • B. Retfeld
Fluids

Abstract

The problems studied in this paper involve the action of laser radiation or a particle beam on a condensed material. Such an interaction produces a hot corona, and the recoil momentum accelerates the cold matter. In the coordinate frame tied to the accelerated target, the acceleration is equivalent to the acceleration of gravity. For this reason, the density distribution ρ is hydrostatic in the zeroth approximation. In this paper the structure of such a flow is studied for a two-phase equation of state. It is shown that instead of a power-law density profile, which obtains for a constant specific-heat ratio, a complicated distribution containing a region with a sharp variation of ρ arises. Similar characteristics of the density profile arise with isochoric heating of matter by an ultrashort laser pulse and the subsequent expansion of the heated layer. The formation of a rarefaction wave and the interaction of oppositely propagating rarefaction waves in a two-phase medium are studied. It is very important to take account of the two-phase nature of the material, since conditions (p a ∼1 Mbar) are often realized under which the foil material comes after expansion into the two-phase region of the phase diagram.

Keywords

Density Profile Rarefaction Wave Ultrashort Laser Pulse Heated Layer Condensed Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Prokhorov, S. I. Anisimov, and P. P. Pashinin, Usp.Fiz. Nauk 119, 401 (1976) [Sov. Phys. Usp. 19, 547 (1976)].Google Scholar
  2. 2.
    S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, Usp. Fiz. Nauk 142, 395 (1984) [Sov. Phys. Usp. 27, 181 (1984)].Google Scholar
  3. 3.
    J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (Wiley, New York, 1982) [Russian translation, Énergoatomizdat, Moscow, 1985].Google Scholar
  4. 4.
    V. E. Fortov and I. T. Iakubov, Physics of Nonideal Plasma, Hemisphere, New York, 1990 [Russian original, Énergoatomizdat, Moscow, 1994].Google Scholar
  5. 5.
    K. Tanaka (1998), private communication.Google Scholar
  6. 6.
    R. Bock, I. Hofmann, and R. Arnold, Nucl. Sci. Appl. 2, 97 (1984).Google Scholar
  7. 7.
    R. C. Arnold and J. Meyer-ter-Vehn, Rep. Prog. Phys. 50(5), 559 (1987).CrossRefADSGoogle Scholar
  8. 8.
    R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Interscience, New York, 1948] [Russian translation, Inostr. Lit., Moscow, 1950].Google Scholar
  9. 9.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Termperature Hydrodynamic Phenomena Vols. 1 and 2, translation of 1st Russian edition (Academic Press, New York, 1966, 1967) [Russian original, 2nd edition, Nauka, Moscow, 1966].Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, New York) [Russian original, Nauka, Moscow, 1986].Google Scholar
  11. 11.
    A. V. Bushman and V. E. Fortov, Usp. Fiz. Nauk 140, 177 (1983) [Sov. Phys. Usp. 26, 465 (1983)].Google Scholar
  12. 12.
    V. A. Agureikin, S. I. Anisimov, A. V. Bushman, G. I. Kanel, V. P. Karyagin, A. B. Konstantinov, B. P. Kryukov, V. F. Minin, S. V. Razorenov, R. Z. Sagdeev, S. G. Sugak, and V. E. Fortov, Teplofiz. Vys. Temp. 22, 964 (1984) [High Temp. 22, 761 (1984)].Google Scholar
  13. 13.
    R. Yamamoto and K. Nakanishi, Phys. Rev. B 49(21), 14958 (1994).Google Scholar
  14. 14.
    A. Onuki, J. Phys.: Condens. Matter 9, 6119 (1997).CrossRefADSGoogle Scholar
  15. 15.
    M. D. Kamchibekov, E. E. Meshkov, N. V. Nevmerzhitsky, and E. A. Sotskov, in Proceedings of the 6th International Workshop on “The Physics of Compressible Turbulent Mixing,” edited by G. Jourdan and L. Houas, Marseille, France, 1997, p. 238.Google Scholar
  16. 16.
    R. I. Nigmatullin, Dynamics of Multiphase Media (Nauka, Moscow, 1987), Part II, p. 136.Google Scholar
  17. 17.
    D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. 109/110, 1 (1996).Google Scholar
  18. 18.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81(1), 224 (1998).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • N. A. Inogamov
    • 1
  • S. I. Anisimov
    • 1
  • B. Retfeld
    • 2
  1. 1.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia
  2. 2.Technical UniversityBraunschweigGermany

Personalised recommendations