Lorentz ionization of atoms in a strong magnetic field

  • V. S. Popov
  • B. M. Karnakov
  • V. D. Mur
Atoms, Spectra, Radiation

Abstract

Lorentz ionization emerges due to the motion of atoms or ions in a strong magnetic field. We use the semiclassical approximation to calculate the probability wL of Lorentz ionization. We also find the stabilization factor S, which takes into account the reduction by the magnetic field of the probability of ionization decay of the bound s state. We estimate the probabilities wL in magnetic-cumulation experiments and in astrophysics. We also qualitatively examine the dynamics of the magnetic cumulation process with allowance for the conductivity of the shell. Finally, we discuss a paradox related to the use of the quasistationary solution at the shell expansion stage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Popov and A. V. Sergee, JETP Lett. 63, 417 (1996).CrossRefADSGoogle Scholar
  2. 2.
    V. S. Popov, V. M. Karnakov, and V. D. Mur, Phys. Lett. A 229, 306 (1997); Zh. Éksp. Teor. Fiz. 113, 1579 (1998) [JETP 86, 860 (1998)].CrossRefADSGoogle Scholar
  3. 3.
    B. M. Karnakov, V. D. Mur, V. S. Popov, JETP Lett. 65, 405 (1997).CrossRefADSGoogle Scholar
  4. 4.
    A. D. Sakharov, R. Z. Lyudaev, E. N. Smirnov et al., Dokl. Akad. Nauk SSSR 165, 65 (1965). [Sov. Phys. Dokl. 10, 1045 (1966).Google Scholar
  5. 5.
    A. D. Sakharov, Usp. Fiz. Nauk 88, 725 (1966). [Sov. Phys. Usp. 9, 294 (1966)].Google Scholar
  6. 6.
    Collected Papers of A. D. Sakharov [in Russian], Tsentrkom, Moscow (1995).Google Scholar
  7. 7.
    V. D. Mur, V. S. Popov, and B. M. Karnakov, Zh. Éksp. Teor. Fiz. 115, 521 (1999) [JETP 88, 286 (1999)].Google Scholar
  8. 8.
    F. Bitter, Sci. Am. July 1965, p. 64.Google Scholar
  9. 9.
    A. I. Pavlovskii, in Collected Papers of A. D. Sakharov [in Russian], Tsentrkom, Moscow (1995), p. 85.Google Scholar
  10. 10.
    G. A. Askar’yan, in He Lived Among Us: Memories of A. D. Sakharov [in Russian], Praktika, Moscow (1996), p. 125.Google Scholar
  11. 11.
    J. Schwinger, Phys. Rev. 82, 664 (1951).ADSMATHMathSciNetGoogle Scholar
  12. 12.
    E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).CrossRefADSGoogle Scholar
  13. 13.
    Handbook of Chemistry and Physics, D. R. Lide (Ed.), CRC Press, London (1994).Google Scholar
  14. 14.
    A. S. Davydov, Solid-State Theory [in Russian], Nauka, Moscow (1976).Google Scholar
  15. 15.
    D. T. Wickramasinghe and L. Ferrario, Astrophys. J. 327, 222 (1988).CrossRefADSGoogle Scholar
  16. 16.
    I. Seipp, K. T. Taylor, and W. Schweizer, J. Phys. B 29, 1 (1996).CrossRefADSGoogle Scholar
  17. 17.
    I. Seipp and W. Schweizer, Astron. Astrophys. 318, 990 (1997).ADSGoogle Scholar
  18. 18.
    S. N. Fabrika and G. G. Balyavin, Preprint 129, Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnii Arkhyz (1998).Google Scholar
  19. 19.
    M. Hehenberger, H. V. McIntosh, and E. Brändas, Phys. Rev. A 10, 1494 (1974).CrossRefADSGoogle Scholar
  20. 20.
    V. Franceschini, V. Grecchi, and H. J. Silverstone, Phys. Rev. A 32, 1338 (1985).CrossRefADSGoogle Scholar
  21. 21.
    V. S. Popov, V. D. Mur, A. V. Sergeev, and V. M. Vainberg, Phys. Lett. A 124, 77 (1987); 149, 418 (1990).CrossRefADSGoogle Scholar
  22. 22.
    V. S. Popov, Phys. Lett. A 173, 63 (1993).ADSGoogle Scholar
  23. 23.
    V. D. Mur and V. S. Popov, Laser Phys. 3, 462 (1993).MathSciNetGoogle Scholar
  24. 24.
    F. M. Fernández, Phys. Rev. A 54, 1206 (1996).CrossRefADSGoogle Scholar
  25. 25.
    R. J. Damburg and V. V. Kolosov, J. Phys. B 11, 1921 (1978).CrossRefADSGoogle Scholar
  26. 26.
    I. W. Herbst and B. Simon, Phys. Rev. Lett. 41, 67 (1978). 41, 1759 (1978).ADSMathSciNetGoogle Scholar
  27. 27.
    L. Benassi, V. Grecchi, E. Harrell, and B. Simon, Phys. Rev. Lett. 42, 704 (1979); 42, 1430 (1979).ADSGoogle Scholar
  28. 28.
    H. J. Silverstone, B. G. Adams, J. Cizek, and P. Otto, Phys. Rev. Lett. 43, 1498 (1979).CrossRefADSGoogle Scholar
  29. 29.
    A. V. Eletskii and V. S. Popov, Dokl. Akad. Nauk SSSR 250, 74 (1980) [Sov. Phys. Dokl. 25, 27 (1980).MathSciNetGoogle Scholar
  30. 30.
    S. P. Alliluev, V. L. Eletsky, and V. S. Popov, Phys. Lett. A 73, 103 (1979); 78, 43 (1980).CrossRefADSGoogle Scholar
  31. 31.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3rd ed., Pergamon Press, Oxford (1977).Google Scholar
  32. 32.
    B. R. Johnson, K. F. Scheibner, and D. Farrely, Phys. Rev. Lett. 51, 2280 (1963).ADSGoogle Scholar
  33. 33.
    V. M. Vainberg and V. A. Gani, in Abstract of Reports Presented at the 16th Conference on Fundamental Atomic Spectroscopy [in Russian], Spectroscopy Council of the Russian Academy of Sciences, Moscow (1998), p. 130.Google Scholar
  34. 34.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).Google Scholar
  35. 35.
    H. S. Carslaw, Introduction to the Mathematical Theory of the Conduction of Heat in Solids, Dover, New York (1945).Google Scholar
  36. 36.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, Academic Press, New York (1980).Google Scholar
  37. 37.
    N. B. Delone and V. P. Krainov, Usp. Fiz. Nauk 168, 531 (1998) [Phys. Usp. 41, 469 (1998)].Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • V. S. Popov
    • 1
  • B. M. Karnakov
    • 2
  • V. D. Mur
    • 2
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Moscow State Engineering Physics InstituteMoscowRussia

Personalised recommendations