Conductivity in a two-dimensional disordered model with anisotropic long-range hopping

  • E. A. Dorofeev
  • S. I. Matveenko


We consider a two-dimensional system of particles localized on randomly distributed sites of a square lattice with anisotropic transition matrix elements between localized sites. The diagram and replica methods are used. The conductivity of a system in different limits of local sites and particles densities is calculated. The model is relevant to the problem of strong nonmagnetic impurities in superconductors with \(d_{x^2 - y^2 } \) symmetry of the order parameter.


Spectroscopy State Physics Field Theory Matrix Element Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Balatsky and M. T. Salkola, Phys. Rev. Lett. 76, 2386 (1996), e-print archive cond-mat/9702087. D. N. Aristov and A. G. Yashenkin, e-print archive cond-mat/9602087.CrossRefADSGoogle Scholar
  2. 2.
    N. B. Kopnin and G. E. Volovik, JETP Lett. 64, 690 (1996).CrossRefADSGoogle Scholar
  3. 3.
    L. P. Gor’kov, A. I. Larkin, and D. E. Khmelnitskii, JETP Lett. 30, 228 (1979).ADSGoogle Scholar
  4. 4.
    E. Abrahams, P. W. Anderson, and T. V. Ramakrishnan, Philos. Mag. B 42, 827 (1980).Google Scholar
  5. 5.
    K. B. Efetov, A. I. Larkin, and D. E. Khmelnitskii, Zh. Éksp. Teor. Fiz. 79, 1120 (1980) [Sov. Phys. JETP 52, 548 (1980)].MathSciNetGoogle Scholar
  6. 6.
    P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Nersesyan, A. M. Tsvelik, and F. Wenger, Phys. Rev. Lett. 72, 2628 (1994).CrossRefADSGoogle Scholar
  8. 8.
    K. Ziegler, M. H. Hettler, and P. J. Hirschfeld, Phys. Rev. Lett. 77, 3013 (1996).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • E. A. Dorofeev
    • 1
  • S. I. Matveenko
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations