Advertisement

Helical ordering of hydrogen bonds between pairs of DNA bases

  • V. L. Golo
  • Yu. M. Evdokimov
  • S. G. Skuridin
  • E. I. Kats
Fluids
  • 30 Downloads

Abstract

The interaction between hydrogen bonds and conformational elastic degrees of freedom has been investigated using the simplest model of a double-strand DNA molecule. The hydrogen bonds are described in terms of two-level quantum systems. After excluding conformational degrees of freedom, one has effective interaction among two-level systems. In the ground state of an ideal double helix, hydrogen bonds in a DNA molecule also have a helical order induced by conformational degrees of freedom. The pitch of the hydrogen-bond helix (and even its sign under certain conditions) is different from that of the basic helix pitch and, generally speaking, is incommensurate with the latter. This effect can, possibly, lead to an inversion of the sign of the circular dichroism in spectral bands, which was detected in some experiments.

Keywords

Hydrogen Bond Field Theory Elementary Particle Quantum Field Theory Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alberts, D. Bray, J. Lewis, M. Raft, K. Noberts, and J. Watson, Molecular Biology of the Cell, Garland Publ., New York (1989).Google Scholar
  2. 2.
    A. V. Vologodskii, S. D. Leven, K. V. Klenin et al., Annu. Rev. Biophys. Biomol. Struct. 23, 609 (1992).Google Scholar
  3. 3.
    J. F. Marko and E. D. Siggia, Macromolecules 27, 981 (1994).CrossRefGoogle Scholar
  4. 4.
    V. L. Golo and E. I. Kats, JETP Lett. 60, 679 (1994).ADSGoogle Scholar
  5. 5.
    V. L. Golo and E. I. Kats, JETP Lett. 62, 627 (1995).ADSGoogle Scholar
  6. 6.
    Y. Marechal, La Recherche 209, 482 (1989).Google Scholar
  7. 7.
    S. Lewin, Displacement of Water and Its Control of Biochemical Reactions, Academic Press, New York (1974).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, New York (1986).Google Scholar
  9. 9.
    V. M. Agranovich, Theory of Excitons [in Russian], Nauka, Moscow (1968).Google Scholar
  10. 10.
    A. S. Davydov, Theory of Molecular Excitons [in Russian], Nauka, Moscow (1968).Google Scholar
  11. 11.
    H. Cappelmann and W. Beim, Z. der Phys. 209, 276 (1968).Google Scholar
  12. 12.
    E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, Pergamon Press, New York (1980).Google Scholar
  13. 13.
    G. Manning, Biopolymers 22, 689 (1983).CrossRefGoogle Scholar
  14. 14.
    W. K. Olson, Proc. Natl. Acad. Sci. USA 74, 1775 (1977).ADSGoogle Scholar
  15. 15.
    F. M. Pohl and T. M. Jovin, J. Mol. Biol. 67, 375 (1972).CrossRefGoogle Scholar
  16. 16.
    R. D. Wells, R. W. Blakesley, S. C. Hardies et al., Crit. Rev. Biochem. 4, 305 (1977).Google Scholar
  17. 17.
    V. Bloomfield, D. M. Crothers, and I. Tinoco, Physical Chemistry of Nucleic Acids, Harper and Row, San Francisco (1974).Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • V. L. Golo
    • 1
  • Yu. M. Evdokimov
    • 2
  • S. G. Skuridin
    • 2
  • E. I. Kats
    • 3
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations