Passive scalar in a large-scale velocity field

  • I. Kolokolov
  • V. Lebedev
  • M. Stepanov
Fluids

Abstract

We consider advection of a passive scalar θ(t,r) by an incompressible large-scale turbulent flow. In the framework of the Kraichnan model all PDF’s (probability distribution functions) for the single-point statistics of θ and for the passive scalar difference θ(r1)−θ(r2) (for separations r1r2 lying in the convective interval) are found.

References

  1. 1.
    G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).ADSMATHMathSciNetGoogle Scholar
  2. 2.
    R. Kraichnan, Phys. Fluids 10, 1417 (1967); Phys. Fluids 11, 945 (1968); J. Fluid Mech. 47, 525 (1971); J. Fluid Mech. 67, 155 (1975); J. Fluid Mech. 64, 737 (1974).Google Scholar
  3. 3.
    B. I. Shraiman and E. D. Siggia, Phys. Rev. E 49, 2912 (1994).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. E 51, 5609 (1995).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    G. K. Batchelor, Theory of Homogeneous Turbulence, Cambridge University Press, New York (1953).Google Scholar
  6. 6.
    A. Monin and A. Yaglom, Statistical Fluid Mechanics, MIT Press, Cambridge (1975).Google Scholar
  7. 7.
    U. Frisch, Turbulence: the Legacy of A. N. Kolmogorov, Cambridge University Press, New York (1995).Google Scholar
  8. 8.
    E. Balkovsky, M. Chertkov, I. Kolokolov, and V. Lebedev, JETP Lett. 61, 1049 (1995).ADSGoogle Scholar
  9. 9.
    G. Falkovich and V. Lebedev, Phys. Rev. E 50, 3883 (1994).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    M. Chertkov, A. Gamba, and I. Kolokolov, Phys. Lett. A 192, 435 (1994).CrossRefADSGoogle Scholar
  11. 11.
    G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).ADSGoogle Scholar
  12. 12.
    D. Bernard, K. Gawedzki, and A. Kupiainen, J. Stat. Phys. 90, 519 (1998).MathSciNetGoogle Scholar
  13. 13.
    A. Gamba and I. Kolokolov, E-prints archive, chao-dyn/9808001.Google Scholar
  14. 14.
    M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic Press, New York (1967).Google Scholar
  15. 15.
    M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 94, 313 (1983).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    I. V. Kolokolov, Ann. of Phys. 202, 165 (1990); Zh. Éksp. Teor. Fiz. 103, 2196 (1993) [Zh. Eksp. Teor. Fiz. 76, 1099 (1993)].CrossRefGoogle Scholar
  17. 17.
    M. Chertkov, G. Falkovich, and I. Kolokolov, Phys. Rev. Lett. 80, 2121 (1998).ADSGoogle Scholar
  18. 18.
    O. N. Dorokhov, Zh. Éksp. Teor. Fiz. 85, 1040 (1983) [Sov. Phys. JETP 58, 606 (1983)].Google Scholar
  19. 19.
    A. Gamba and I. Kolokolov, J. Stat. Phys. 85, 489 (1996).CrossRefMathSciNetGoogle Scholar
  20. 20.
    H. W. Wyld, Ann. Phys. 14, 143 (1961).MATHMathSciNetGoogle Scholar
  21. 21.
    P. C. Martin, E. Siggia, and H. Rose, Phys. Rev. A 8, 423 (1973).ADSGoogle Scholar
  22. 22.
    C. de Dominicis, J. de Phys. 37, c01-247 (1976).Google Scholar
  23. 23.
    H. Janssen, Z. Phys. B 23, 377 (1976).MathSciNetGoogle Scholar
  24. 24.
    C. de Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).ADSGoogle Scholar
  25. 25.
    E. Balkovsky, G. Falkovich, and V. Lebedev, submitted to Phys. Fluids (1999).Google Scholar
  26. 26.
    B. I. Shraiman and E. D. Siggia, CRAS 321, Ser. II, 279 (1995).Google Scholar
  27. 27.
    A. Pumir, B. I. Shraiman, and E. D. Siggia, Phys. Rev. E 55, 1263 (1997).CrossRefADSGoogle Scholar
  28. 28.
    E. Balkovsky, G. Falkovich, and V. Lebedev, Phys. Rev. E 55, 4881 (1997).CrossRefADSGoogle Scholar
  29. 29.
    M. Chertkov, A. Gamba, and I. Kolokolov, Phys. Lett. A 192, 435 (1994).CrossRefADSGoogle Scholar
  30. 30.
    G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).ADSGoogle Scholar
  31. 31.
    D. Bernard, K. Gawedzki, and A. Kupiainen, J. Stat. Phys. 90, 519 (1998).MathSciNetGoogle Scholar
  32. 32.
    A. Gamba and I. Kolokolov, E-prints archive, chao-dyn/98 08 001.Google Scholar
  33. 33.
    M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic Press, New York (1967).Google Scholar
  34. 34.
    M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 94, 313 (1983).CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    I. V. Kolokolov, Ann. of Phys. 202, 165 (1990); Zh. Éksp. Teor. Fiz. 103, 2196 (1993) [JETP 76, 1099 (1993)].CrossRefGoogle Scholar
  36. 36.
    M. Chertkov, G. Falkovich, and I. Kolokolov, Phys. Rev. Lett. 80, 2121 (1998).ADSGoogle Scholar
  37. 37.
    O. N. Dorokhov, Zh. Éksp. Teor. Fiz. 85, 1040 (1983) [Sov. Phys. JETP 58, 606 (1983).Google Scholar
  38. 38.
    A. Gamba and I. Kolokolov, J. Stat. Phys. 85, 489 (1996).CrossRefMathSciNetGoogle Scholar
  39. 39.
    H. W. Wyld, Ann. Phys. 14, 143 (1961).MATHMathSciNetGoogle Scholar
  40. 40.
    P. C. Martin, E. Siggia, and H. Rose, Phys. Rev. A 8, 423 (1973).ADSGoogle Scholar
  41. 41.
    C. de Dominicis, J. de Phys. 37, c01-247 (1976).Google Scholar
  42. 42.
    H. Janssen, Z. Phys. B 23, 377 (1976).MathSciNetGoogle Scholar
  43. 43.
    C. de Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).ADSGoogle Scholar
  44. 44.
    E. Balkovsky, G. Falkovich, and V. Lebedev, submitted to Phys. Fluids (1999).Google Scholar
  45. 45.
    B. I. Shraiman and E. D. Siggia, CRAS 321, Ser. 11, 279 (1995).Google Scholar
  46. 46.
    A. Pumir, B. I. Shraiman, and E. D. Siggia, Phys. Rev. E 55, 1263 (1997).CrossRefADSGoogle Scholar
  47. 47.
    E. Balkovsky, G. Falkovich, and V. Lebedev, Phys. Rev. E 55, 4881 (1997).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • I. Kolokolov
    • 1
    • 2
  • V. Lebedev
    • 3
    • 4
  • M. Stepanov
    • 5
    • 6
  1. 1.Budker Institute of Nuclear PhysicsNovasibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael
  5. 5.Institute of Automation and ElectrometryRussian Academy of SciencesNovasibirskRussia
  6. 6.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations