Cherenkov interaction of vortices with a free surface

  • E. A. Kuznetsov
  • V. P. Ruban


The interaction of vortex filaments in an ideal incompressible fluid with the free surface of the latter is investigated in the canonical formalism. A Hamiltonian formulation of the equations of motion is given in terms of both canonical and noncanonical Poisson brackets. The relationship between these two approaches is analyzed. The Lagrangian of the system and the Poisson brackets are obtained in terms of vortex lines, making it possible to study the dynamics of thin vortex filaments with allowance for finite thickness of the filaments. For two-dimensional flows exact equations of motion describing the interaction of point vortices and surface waves are derived by transformation to conformal variables. Asymptotic steady-state solutions are found for a vortex moving at a velocity lower than the minimum phase velocity of surface waves. It is found that discrete coupled states of surface waves above a vortex are possible by virtue of the inhomogeneous Doppler effect. At velocities higher than the minimum phase velocity the buoyant rise of a vortex as a result of Cherenkov radiation is described in the semiclassical limit. The instability of a vortex filament against three-dimensional kink perturbations due to interaction with the “image” vortex is demonstrated.


Vortex Free Surface Surface Wave Poisson Bracket Incompressible Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., rev., Pergamon Press, Oxford-New York (1987).Google Scholar
  2. 2.
    V. E. Zakharov, Prikl. Mekh. Tekh. Fiz., No. 2, 86 (1968).Google Scholar
  3. 3.
    V. E. Zakharov and N. E. Filonenko, Dokl. Akad. Nauk SSSR 170, 1292 (1966) [Sov. Phys. Dokl. 11, 881 (1967)].Google Scholar
  4. 4.
    E. A. Kuznetsov and P. M. Lushnikov, Zh. Éksp. Teor. Fiz. 108, 614 (1995) [JETP 81, 332 (1995)].Google Scholar
  5. 5.
    E. A. Kuznetsov and M. D. Spector, Zh. Éksp. Teor. Fiz. 71, 262 (1976) [Sov. Phys. JETP 44, 136 (1976)].Google Scholar
  6. 6.
    E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Phys. Rev. E 48, 1283 (1994); Phys. Lett. A 182, 387 (1993).ADSMathSciNetGoogle Scholar
  7. 7.
    A. I. D’yachenko, V. E. Zakharov, and E. A. Kuznetsov, Fiz. Plazmy 22, 916 (1996) [Plasma Phys. Rep. 22, 829 (1996)].Google Scholar
  8. 8.
    V. E. Zakharov and N. N. Filonenko, Prikl. Mekh. Tekh. Fiz. No. 5, 62 (1968).Google Scholar
  9. 9.
    V. E. Zakharov, in Nonlinear Waves and Weak Turbulence (Advances in Math. Sci., Series 2), Vol. 182, V. E. Zakharov (ed.), Am. Math. Soc., Providence, R.I. (1998), p. 167.Google Scholar
  10. 10.
    M. V. Keldysh and M. A. Lavrent’ev, in Proceedings of the Conference on the Theory of Wave Resistance [in Russian], Izd. TsAGI, Moscow (1937), p. 31.Google Scholar
  11. 11.
    N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydrodynamics [in Russian], Part 1, Fizmatgiz, Moscow (1963).Google Scholar
  12. 12.
    E. A. Novikov, Izv. Akad. Nauk SSSR Fiz. Atm. Okeana 17, 956 (1981).Google Scholar
  13. 13.
    H. L. Lamb, Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge (1932).Google Scholar
  14. 14.
    V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167, 1137 (1997).Google Scholar
  15. 15.
    E. A. Kuznetsov and V. P. Ruban, JETP Lett. 67, 1076 (1998).CrossRefADSGoogle Scholar
  16. 16.
    A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Phys. Lett. A 221, 73 (1996).ADSGoogle Scholar
  17. 17.
    S. C. Crow, AIAA J. 8, 2172 (1970).Google Scholar
  18. 18.
    A. V. Kats and V. M. Kontorovich, Fiz. Nizk. Temp. 23, 120 (1997) [Low Temp. Phys. 23, 89 (1997)].Google Scholar
  19. 19.
    E. A. Kuznetsov and A. V. Mikhailov, Phys. Lett. A 77, 37 (1980).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45, 790 (1980).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    D. Lewis, J. Marsden, R. Montgomery, and T. Ratiu, Physica D 18, 391 (1986).ADSMathSciNetGoogle Scholar
  22. 22.
    A. Rouhi and J. Wright, Phys. Rev. E 48, 1850 (1993).ADSMathSciNetGoogle Scholar
  23. 23.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, New York-Oxford (1974).Google Scholar
  24. 24.
    B. B. Kadomtsev and V. I. Petviashvili, Dokl. Akad. Nauk SSSR 192, 753 (1970) [Sov. Phys. Dokl. 15, 539 (1970)].Google Scholar
  25. 25.
    E. A. Kuznetsov and J. J. Rasmussen, Phys. Rev. E 51, 4479 (1995).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
  • V. P. Ruban
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations