Linear and nonlinear excitonic absorption in semiconducting quantum wires crystallized in a dielectric matrix

  • V. S. Dneprovskii
  • E. A. Zhukov
  • E. A. Muljarov
  • S. G. Tikhodeev


Spectra of linear and nonlinear absorption of GaAs and CdSe semiconducting quantum wires crystallized in a transparent dielectric matrix (inside chrysotile-asbestos nanotubes) have been measured. Their features are interpreted in terms of excitonic transitions and filling of the exciton phase space in the quantum wires. The theoretical model presented here has allowed us to calculate the energies of excitonic transitions that are in qualitative agreement with experimental data. The calculated exciton binding energies in quantum wires are a factor of several tens higher than in bulk semiconductors. The cause of this increase in the exciton binding energy is not only the size quantization, but also the “dielectric enhancement,” i.e., stronger attraction between electrons and holes owing to the large difference between permittivities of the semiconductor and dielectric matrix.


GaAs Field Theory Phase Space Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Arakawa and A. Yariv, IEEE J. Quantum Electron. 22, 1887 (1986).CrossRefADSGoogle Scholar
  2. 2.
    W. Weigscheider, L. N. Pfeiffer, M. M. Dignam, A. Pinczuk, K. W. West, S. L. McCall, and R. Hull, Phys. Rev. Lett. 71, 4071 (1993).ADSGoogle Scholar
  3. 3.
    S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).CrossRefADSGoogle Scholar
  4. 4.
    N. S. Rytova, Dokl. Akad. Nauk SSSR 163, 1118 (1965) [Sov. Phys. Dokl. 10, 754 (1966)].Google Scholar
  5. 5.
    L. V. Keldysh JETP Lett. 29, 658 (1979).ADSGoogle Scholar
  6. 6.
    M. S. Sundaram, S. A. Chalmers, P. F. Hopkins, and A. C. Gossard, Science 254, 1326 (1991).ADSGoogle Scholar
  7. 7.
    V. V. Poborchii, M. S. Ivanova, and I. A. Salamatina, Superlattices Microstruct. 16, 133 (1994); V. N. Bogomolov, Usp. Fiz. Nauk 124, 171 (1978) [Sov. Phys. Usp. 21, 77 (1978)]; N. V. Gushchina, V. S. Dneprovskii, E. A. Zhukov, O. V. Pavlov, V. V. Poborchii, and I. A. Salamatina, JETP Lett. 61, 507 (1994); V. Dneprovskii, N. Gushina, O. Pavlov, V. Poborchii, I. Salamatina, and E. Zhukov, Phys. Lett. A 204, 59 (1995).ADSGoogle Scholar
  8. 8.
    E. A. Muljarov and S. G. Tikhodeev, Zh. Éksp. Teor. Fiz. 111, 274 (1997) [JETP 84, 151 (1997)].Google Scholar
  9. 9.
    E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, Phys. Rev. B 51, 14370 (1995).CrossRefADSGoogle Scholar
  10. 10.
    G. E. W. Bauer and T. Ando, Phys. Rev. B 38, 6015 (1988).ADSGoogle Scholar
  11. 11.
    Landolt-Börnstein, New Series, Group III, Vol. 17, Springer-Verlag, Berlin (1982).Google Scholar
  12. 12.
    T. Ogawa and T. Takagahara, Phys. Rev. B 43, 14325 (1991); Phys. Rev. B 44, 8138 (1991).ADSGoogle Scholar
  13. 13.
    S. Glutch and D. S. Chemla, Phys. Rev. B 53, 15902 (1996).ADSGoogle Scholar
  14. 14.
    V. D. Egorov, Hoang Xuann Nguyen, R. Zimmermann, V. S. Dneprovskii, M. Kaschke, and D. S. Khechinashvili, Phys. Status Solidi B 159, 403 (1990).Google Scholar
  15. 15.
    H. Haug and S. W. Koch, Quantum Theory and Electronic Properties of Semiconductors, World Scientific, Singapore (1990).Google Scholar
  16. 16.
    S. Benner and H. Haug, Europhys. Lett. 16, 579 (1991).ADSGoogle Scholar
  17. 17.
    V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, Solid State Commun. 81, 227 (1992).CrossRefGoogle Scholar
  18. 18.
    P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press (1990).Google Scholar
  19. 19.
    S. I. Wawilow and W. L. Lewschin, Z. Phys. 35, 932 (1926).Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • V. S. Dneprovskii
    • 1
  • E. A. Zhukov
    • 1
  • E. A. Muljarov
    • 2
  • S. G. Tikhodeev
    • 2
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of General PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations