Coulomb effects in a ballistic one-channel S-S-S device

  • D. A. Ivanov
  • M. V. Feigel’man


We develop a theory of Coulomb oscillations in superconducting devices in the limit of small charging energy E C ≪Δ. We consider a small superconducting grain with finite capacitance connected to two superconducting leads by nearly ballistic single-channel quantum point contacts. The temperature is assumed to be very low, so there are no single-particle excitations on the grain. Then the behavior of the system can be described in terms of the quantum mechanics of the superconducting phase on the island. The Josephson energy as a function of this phase has two minima that become degenerate when the phase difference on the leads equals to π, the tunneling amplitude between them being controlled by the gate voltage on the grain. We find the Josephson current and its low-frequency fluctuations, and predict their periodic dependence with period 2e on the induced charge Q x =CV g .


Point Contact Phase Difference Gate Voltage Charge Energy Small Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. I. Glazman and K. A. Matveev, Zh. Éksp. Teor. Fiz. 98, 1834 (1990) [Sov. Phys. JETP 71, 1031 (1990)].Google Scholar
  2. 2.
    K. A. Matveev, Phys. Rev. B 51, 1743 (1995).CrossRefADSGoogle Scholar
  3. 3.
    L. I. Glazman, K. A. Matveev et al., Physica B 203, 316 (1994).CrossRefADSGoogle Scholar
  4. 4.
    H. Takayanagi, T. Akazaki, and J. Nitta, Phys. Rev. Lett. 75, 3533 (1995).CrossRefADSGoogle Scholar
  5. 5.
    C. W. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).CrossRefADSGoogle Scholar
  6. 6.
    M. C. Koops et al., Phys. Rev. Lett. 77, 2542 (1996).CrossRefADSGoogle Scholar
  7. 7.
    A. Yu. Kasumov et al., Phys. Rev. Lett. 77, 3029 (1996).CrossRefADSGoogle Scholar
  8. 8.
    A. Yu. Kitaev, E-print quant-ph/9707021 (1997).Google Scholar
  9. 9.
    D. P. Divincenzo, E-print cond-mat/9612126 (1996).Google Scholar
  10. 10.
    A. Shnirman, G. Schoen, and Z. Hermon, E-print cond-mat/9706016 (1997).Google Scholar
  11. 11.
    D. V. Averin, E-print quant-ph/9706026 (1997).Google Scholar
  12. 12.
    A. Martin-Rodero, A. Levy Yeyati, and F. J. Garcia-Vidal, Phys. Rev. B 53, R8891 (1996).ADSGoogle Scholar
  13. 13.
    D. Averin and H. T. Imam, Phys. Rev. Lett. 76, 3814 (1996).CrossRefADSGoogle Scholar
  14. 14.
    G. B. Lesovik and A. Golubov, in Proc. of the 31 Recontres de Moriond, T. Martin et al. (eds.), Editions Frontieres, Gif-sur-Yvette (1996).Google Scholar
  15. 15.
    C. W. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).CrossRefADSGoogle Scholar
  16. 16.
    W. Lichten, Atomic Physics, Vol. No. 4, G. zu Putlitz et al. (eds.), Plenum, New York (1975).Google Scholar
  17. 17.
    A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B 28, 6281 (1983).CrossRefADSGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, Pergamon Press, Oxford (1977).Google Scholar
  19. 19.
    A. Martin-Rodero et al., E-print cond-mat/9607079 (1996).Google Scholar
  20. 20.
    A. Furusaki and K. A. Matveev, Phys. Rev. B 52, 16676 (1995).ADSGoogle Scholar
  21. 21.
    G. B. Lesovik and R. Loosen, JETP Lett. 65, 295 (1997); G. B. Lesovik, in Proceedings of the Conference “Meso-97” Chernogolovka; submitted to Usp. Fiz. Nauk (1998).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • D. A. Ivanov
    • 1
    • 2
  • M. V. Feigel’man
    • 3
  1. 1.L. D. Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.12-127 M.I.T.CambridgeUSA
  3. 3.L. D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations