Photon cooperative effect in resonance spectroscopy

  • B. A. Veklenko
Atoms, Spectra, Radiation


A systematic method is proposed for calculating the density matrix of subsystems interacting with their environment under conditions of thermodynamic equilibrium. The density matrix of photons resonantly interacting with a surrounding gas is calculated. It is shown that use of the Gibbs distribution allows one to completely eliminate inelastic processes from the calculations. A correct account of photon-photon correlators indicates the presence of new cooperative effects. A new branch of the polariton spectrum is predicted, which is due to the presence of excited atoms in the medium. With the help of the density matrix the mean filling numbers of the photon modes are calculated. In terms of wavelengths, we have obtained a generalization of the Planck formula which accounts for photon cooperative phenomena. The manifestation of these effects in kinetic processes is discussed.


Field Theory Elementary Particle Quantum Field Theory Density Matrix Thermodynamic Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, N.J., 1963).Google Scholar
  2. 2.
    A. A. Panteleev, V. A. Roslyakov, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 97, 1777 (1990) [Sov. Phys. JETP 70, 1003 (1990)].Google Scholar
  3. 3.
    Yu. K. Zemtsov, A. Yu. Sechin, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 110, 1654 (1996) [JETP 83, 909 (1996)].Google Scholar
  4. 4.
    R. H. Dicke, Phys. Rev. 93, 99 (1954).CrossRefADSzbMATHGoogle Scholar
  5. 5.
    M. J. Stephen, J. Chem. Phys. 40, 669 (1964).CrossRefGoogle Scholar
  6. 6.
    R. Bonifacio and P. Schwendimann, Phys. Rev. A 4, 302, 854 (1971).ADSGoogle Scholar
  7. 7.
    F. Haake and R. J. Glauber, Phys. Rev. A 5, 1457 (1972).CrossRefADSGoogle Scholar
  8. 8.
    M. S. Feld and J. C. MacGillivary, in Topics in Current Physics, Vol. 21, edited by M. S. Feld and V. S. Letokhov (Springer, Berlin, 1980), p. 7.Google Scholar
  9. 9.
    G. S. Agarwal and R. R. Puri, Opt. Commun. 69, 267 (1989).CrossRefADSGoogle Scholar
  10. 10.
    G. M. Palma, A. Vaglica, C. Leonardi, et al., Opt. Commun. 377, 79 (1990).Google Scholar
  11. 11.
    M. R. Wahiddin, S. S. Hassan, and R. K. Bullough, J. Mod. Opt. 42, 171 (1995).ADSGoogle Scholar
  12. 12.
    B. A. Veklenko, Izv. Vuzov SSSR. Fizika, No. 9, 71 (1983).Google Scholar
  13. 13.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 96, 457 (1989) [Sov. Phys. JETP 69, 258 (1989)].Google Scholar
  14. 14.
    B. A. Veklenko and G. B. Tkachuk, Izv. Vuzov. Fizika, No. 2, 89 (1987).Google Scholar
  15. 15.
    M. J. Gagen, H. M. Viseman, and G. J. Milburn, Phys. Rev. A 48, 132 (1993).CrossRefADSGoogle Scholar
  16. 16.
    M. B. Mensky, Phys. Lett. A 219, 137 (1996).CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Wiley, New York, 1965).Google Scholar
  18. 18.
    Yu. A. Vdovin and V. M. Galitskii, Zh. Éksp. Teor. Fiz. 48, 1352 (1965) [Sov. Phys. JETP 21, 904 (1965)].Google Scholar
  19. 19.
    V. L. Ginzburg and L. P. Pitaevskii, Usp. Fiz. Nauk 151, 333 (1987) [Sov. Phys. Usp. 30, 168 (1987)].MathSciNetGoogle Scholar
  20. 20.
    N. N. Bogolyubov and S. V. Tyablikov, Dokl. Nauk SSSR 126, 53 (1959) [Sov. Phys. Dokl. 4, 589 (1959)].Google Scholar
  21. 21.
    B. A. Veklenko, Ivz. Vuzov. Fizika, No. 11, 11 (1984).Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • B. A. Veklenko
    • 1
  1. 1.Moscow Energy InstituteMoscowRussia

Personalised recommendations