Magnetoelectric effect and toroidal ordering in Ga2−xFexO3

  • Yu. F. Popov
  • A. M. Kadomtseva
  • G. P. Vorob’ev
  • V. A. Timofeeva
  • D. M. Ustinin
  • A. K. Zvezdin
  • M. M. Tegeranchi
Solids

Abstract

The field dependence of the magnetoelectric effect and longitudinal magnetostriction of Ga2−xFexO3 single crystals is studied in magnetic fields up to 200 kOe in the temperature range from 4.2 to 300 K. It is shown that the magnetoelectric effect in these materials is determined mainly by the toroidal moment T and is not related to magnetostriction, as was previously theorized. A new method for determining the toroidal moment by measuring the electric polarization in a strong magnetic field is proposed. The value of the toroidal moment of the unit cell in Ga1.15Fe0.85O3 is calculated: T=(Ta,0,0), where Ta=24.155µB Å per unit cell. Experimental data are analyzed using a theory of toroidal spin ordering, which gives good agreement with experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Remeika, J. Appl. Phys. Suppl. 31, 26 (1960).Google Scholar
  2. 2.
    D. L. White, Bull. Am. Phys. Soc. 5, 189 (1980).ADSGoogle Scholar
  3. 3.
    C. H. Nowlin and R. V. Jones, J. Appl. Phys. 34, 1962 (1963).CrossRefGoogle Scholar
  4. 4.
    A. Pinto, J. Appl. Phys. 37, 4372 (1966).CrossRefGoogle Scholar
  5. 5.
    E. A. Wood, Acta Crystallogr. 13, 682 (1960).CrossRefGoogle Scholar
  6. 6.
    S. C. Abraham, J. M. Reddy, and J. L. Bernstein, J. Chem. Phys. 42, 3957 (1965).Google Scholar
  7. 7.
    G. T. Rado, in Proceedings of the International Conference on Magnetism, Nottingham, 1964, Institute of Physics and Physical Society, London (1965), p. 361.Google Scholar
  8. 8.
    G. T. Rado, J. Appl. Phys. 37, 1403 (1966).CrossRefGoogle Scholar
  9. 9.
    T. M. Perekalina, E. M. Smirnovskaya, I. S. Zheludev, V. A. Timofeeva, A. B. Bykov, Kristallografiya 32, 795 (1987) [Sov. Phys. Crystallogr. 32, 469 (1987)].Google Scholar
  10. 10.
    Yu. F. Popov, A. K. Zvezdin, G. P. Vorob’ev, and A. M. Kadomtseva, JETP Lett. 57, 69 (1993).ADSGoogle Scholar
  11. 11.
    G. T. Rado, Int. J. Magn. 6, 121 (1974).Google Scholar
  12. 12.
    G. T. Rado, Phys. Rev. Lett. 13, 335 (1964).CrossRefADSGoogle Scholar
  13. 13.
    M. F. Bertaut, G. Buisson, J. Chappert, and G. Bassi, C. R. Acad. Sci. 260, 3355 (1965).Google Scholar
  14. 14.
    A. Delapalme, J. Phys. Chem. Solids 28, 1451 (1967).Google Scholar
  15. 15.
    Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 33, 1531 (1957) [Sov. Phys. JETP 6, 1184 (1958)].Google Scholar
  16. 16.
    V. M. Dubovik and A. A. Cheshkov, Fiz. Elem. Chastits At. Yadra 5, 791 (1974) [Sov. J. Part. Nucl. 5, 318 (1975)].Google Scholar
  17. 17.
    H. Schmid, Int. J. Magn. 4, 337 (1973).MathSciNetGoogle Scholar
  18. 18.
    A. A. Gorbatsevich and Yu. F. Tugushev, Zh. Éksp. Teor. Fiz. 85, 1107 (1983) [Sov. Phys. JETP 58, 643 (1983)].Google Scholar
  19. 19.
    A. A. Gorbatsevich and Yu. V. Kopaev, Ferroelectrics 161, 321 (1994).Google Scholar
  20. 20.
    V. M. Dubovik and L. A. Tusunyan, Fiz. Elem. Chastits At. Yadra 14, 1193 (1983) [Sov. J. Part. Nucl. 14, 504 (1983)].Google Scholar
  21. 21.
    R. R. Birss, Symmetry and Magnetism, North-Holland, Amsterdam (1964), p. 245.Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • Yu. F. Popov
    • 1
  • A. M. Kadomtseva
    • 1
  • G. P. Vorob’ev
    • 1
  • V. A. Timofeeva
    • 1
  • D. M. Ustinin
    • 1
  • A. K. Zvezdin
    • 2
  • M. M. Tegeranchi
    • 2
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of General PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations