De Haas-van Alphen effect in unconventional superconductors

  • M. G. Vavilov
  • V. P. Mineev


A theory of the de Haas-van Alphen effect in type-II p-wave and D-wave superconductors (the latter corresponds to the B1g one-dimensional representation of group D4h) has been developed. Solutions for the order parameter and density of quasiparticle states near the upper critical field have been calculated. If the curve enclosing the extremal cross section of the Fermi surface in the plane perpendicular to the external magnetic field coincides with the line of nodes of the superconducting order parameter, the effect of the transition to the superconducting state on the amplitude of magnetization oscillations is negligible. If the line of nodes is oriented differently with respect to the applied magnetic field, the de Haas-van Alphen oscillations are suppressed in a manner qualitatively similar to the case of conventional superconductors.


Magnetic Field External Magnetic Field Fermi Surface Applied Magnetic Field Critical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Corcoran, N. Harrison, C. J. Haworth et al., Physica B 206–207, 534 (1995).Google Scholar
  2. 2.
    K. Maki, Phys. Rev. B 44, 2861 (1991).CrossRefADSGoogle Scholar
  3. 3.
    M. J. Stephen, Phys. Rev. B 45, 5481 (1992).CrossRefADSGoogle Scholar
  4. 4.
    S. Dukan and Z. Tesanovic, Phys. Rev. Lett. 74, 2311 (1995).CrossRefADSGoogle Scholar
  5. 5.
    M. G. Vavilov and V. P. Mineev, Zh. Éksp. Teor. Fiz. 112, 1873 (1997) [JETP 85, 1024 (1997)].Google Scholar
  6. 6.
    K. Maki, Int. J. Mod. Phys. B 7, 82 (1993).ADSGoogle Scholar
  7. 7.
    U. Brandt, W. Pesch, and L. Tewordt, Z. Phys. 201, 209 (1967).Google Scholar
  8. 8.
    K. Scharnberg and R. A. Klemm, Phys. Rev. B 22, 5233 (1980).CrossRefADSGoogle Scholar
  9. 9.
    D. J. van Harlingen, Rev. Mod. Phys. 67, 515 (1995).ADSGoogle Scholar
  10. 10.
    Yu. A. Bychkov and E. I. Rashba, Zh. Éksp. Teor. Fiz. 85, 1826 (1983) [Sov. Phys. JETP 58, 1062 (1983)].ADSGoogle Scholar
  11. 11.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, Dover Publ., Inc., New York (1993).Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • M. G. Vavilov
    • 1
  • V. P. Mineev
    • 1
  1. 1.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations