Dynamic fluctuation phenomena in double membrane films

  • E. I. Kats
  • V. V. Lebedev
  • S. V. Malinin


Dynamics of double membrane films is investigated in the long-wavelength limit qh≪1 (q is the wave vector, and h is the thickness of the film) including the overdamped squeezing mode. We demonstrate that thermal fluctuations essentially modify the character of the mode due to its nonlinear coupling to the transverse shear hydrodynamic mode. The renormalization can be analyzed if the condition g≪1 is satisfied (where gT/κ, T is the temperature, and κ is the bending modulus). The corresponding Green’s function acquires as a function of the frequency ω a cut along the imaginary semiaxis. At \(qh > \sqrt g \)the effective length of the cut is ∼Tq3/η (where η is the shear viscosity of the liquid). At \(qh > \sqrt g \)the fluctuations lead to an increase in the attenuation of the squeezing mode: it is larger than the ‘bare’ value by a factor \(1/\sqrt g \). We also present the analysis of the elastic modes.


Spectroscopy Viscosity Attenuation State Physics Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Physics of Amphiphilic Layers, ed. by J. Meuner, D. Langevin, and N. Boccara, Springer Proceedings in Physics, Vol. 21, Springer-Verlag, Berlin (1987).Google Scholar
  2. 2.
    S. A. Safran and N. A. Clark, Physics of Complex and Supermolecular Fluids, Wiley, New York (1987).Google Scholar
  3. 3.
    D. Nelson, T. Pvian, and S. Weinberg, Statistical Mechanics of Membranes and Surfaces, World Scientific, New York (1989).Google Scholar
  4. 4.
    A. M. Bellocq, J. Piaif, and P. Bothorel, Adv. Colloid Interface Sci. 20, 167 (1984).CrossRefGoogle Scholar
  5. 5.
    G. Porte, J. Appel, P. Bassereau, J. Marignan, M. Scouri, I. Billard, and M. Delsanti, Physica A 176, 168 (1991).CrossRefADSGoogle Scholar
  6. 6.
    G. Porte, J. Phys. II (Condens. Matter) 4, 8649 (1992).ADSGoogle Scholar
  7. 7.
    P. B. Canham, J. Theor. Biol. 26, 61 (1970).Google Scholar
  8. 8.
    W. Helfrich, Z. Naturforsch. B 103, 67 (1975).Google Scholar
  9. 9.
    P. G. de Gennes and C. Taupin, J. Chem. Phys. 86, 2294 (1982).Google Scholar
  10. 10.
    W. Helfrich, J. Phys. (Paris) 46, 1263 (1985).Google Scholar
  11. 11.
    D. Förster, Phys. Lett. A 114, 115 (1986).ADSMathSciNetGoogle Scholar
  12. 12.
    L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).CrossRefADSGoogle Scholar
  13. 13.
    H. Kleinert, Phys. Lett. A 114, 263 (1986).CrossRefADSGoogle Scholar
  14. 14.
    A. M. Polyakov, Nucl. Phys. B 268, 406 (1986).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    W. Helfrich, Z. Naturforsch. A 33, 305 (1978).Google Scholar
  16. 16.
    J. N. Israelashvili, Intermolecular and Surface forces, Academic Press, Orlando (1985).Google Scholar
  17. 17.
    F. Brochard and M. Lennon, J. Phys. Lett. (Paris) 36, 1035 (1975).Google Scholar
  18. 18.
    E. I. Kats and V. V. Lebedev, Fluctuational Effects in the Dynamics of Liquid Crystals, Springer-Verlag, New York (1993).Google Scholar
  19. 19.
    I. E. Dzyaloshinskii and G. E. Volovik, Ann. Phys. 125, 67 (1980).MathSciNetGoogle Scholar
  20. 20.
    V. V. Lebedev and A. R. Muratov, Zh. Éksp. Teor. Fiz. 95, 1751 (1989) [Sov. Phys. JETP 68, 1011 (1989)].Google Scholar
  21. 21.
    E. I. Kats and V. V. Lebedev, Phys. Rev. E 49, 3003 (1994).CrossRefADSGoogle Scholar
  22. 22.
    H. W. Wyld, Ann. Phys. 14, 143 (1961).zbMATHMathSciNetGoogle Scholar
  23. 23.
    P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423 (1973).ADSGoogle Scholar
  24. 24.
    S. K. Ma, Modern Theory of Critical Phenomena, Benjamin, New York (1976).Google Scholar
  25. 25.
    C. de Dominicis, J. Phys. (Paris), Colloq. 37, C1–247 (1976).Google Scholar
  26. 26.
    H. K. Janssen, Z. Phys. B 23, 377 (1976).MathSciNetGoogle Scholar
  27. 27.
    S. M. Block, Noninvasive Techniques in Cell Biology, Wiley-Liss, New York (1990).Google Scholar
  28. 28.
    P. Richetti, L. Moreau, P. Barois, and P. Kekicheff, Phys. Rev. E 54, 1749 (1996).CrossRefADSGoogle Scholar
  29. 29.
    R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 73, 1392 (1994).CrossRefADSGoogle Scholar
  30. 30.
    R. Bar-Ziv, R. Menes, E. Moses, and S. A. Safran, Phys. Rev. Lett. 75, 3356 (1995).ADSGoogle Scholar
  31. 31.
    R. Bar-Ziv, T. Frisch, and E. Moses, Phys. Rev. Lett. 75, 3481 (1995).ADSGoogle Scholar
  32. 32.
    L. D. Landau and E. M. Lifshitz, Fluids Mechanics, Pergamon, New York (1988).Google Scholar
  33. 33.
    E. I. Kats and V. V. Lebedev, Zh. Éksp. Teor. Fiz. 94(5), 134 (1988) [Sov. Phys. JETP 67, 940 (1988)].Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • E. I. Kats
    • 1
  • V. V. Lebedev
    • 2
  • S. V. Malinin
    • 3
  1. 1.Max-Planck Institute for Physics of Complex SystemsDresdenGermany
  2. 2.Department of PhysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations