Advertisement

Anomaly-free quantization of a string in two-dimensional space-time

  • S. N. Vergeles
Nuclei, Particles, and Their Interaction

Abstract

An anomaly-free quantum theory of a relativistic string is constructed in two-dimensional space-time. The states of the string are found to be similar to the states of a massless chiral quantum particle. This result is obtained by generalizing the concept of an “operator” in quantum field theory.

Keywords

Spectroscopy State Physics Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Jackiw, E-print archive, gr-qc/9612052.Google Scholar
  2. 2.
    D. Gangemi and R. Jackiw, Phys. Lett. B 337, 271 (1994); Phys. Rev. D 50, 3913 (1994); D. Amati, S. Elitzur, and E. Rabinovici, Nucl. Phys. B 418, 45 (1994); D. Louis-Martinez, J. Gegenberg, and G. Kunstatter, Phys. Lett. B 321, 193 (1994); E. Benedict, Phys. Lett. B 340, 43 (1994); T. Strobl, Phys. Rev. D 50, 7346 (1994).ADSMathSciNetGoogle Scholar
  3. 3.
    C. Callan, S. Giddings, J. Harvey, and A. Strominger, Phys. Rev. D 45, 1005 (1992).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Cambridge University Press, Cambridge, 1987 [Russian translation, Mir, Moscow, 1990].Google Scholar
  5. 5.
    P. A. M. Dirac, Lectures on Quantum Field Theory, Yeshiva University Press, N.Y., 1967 [Russian translation, Mir, Moscow, 1971].Google Scholar
  6. 6.
    S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965 [Russian translation, Mir, Moscow, 1968].Google Scholar
  7. 7.
    N. Bourbaki, Spectral Theory [Russian translation, Mir, Moscow, 1972].Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • S. N. Vergeles
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations