Optical solitons and quasisolitons

  • V. E. Zakharov
  • E. A. Kuznetsov
Nonlinear Physics


Optical solitons and quasisolitons are investigated in reference to Cherenkov radiation. It is shown that both solitons and quasisolitons can exist, if the linear operator specifying their asymptotic behavior at infinity is sign-definite. In particular, the application of this criterion to stationary optical solitons shifts the soliton carrier frequency at which the first derivative of the dielectric constant with respect to the frequency vanishes. At that point the phase and group velocities coincide. Solitons and quasisolitons are absent, if the third-order dispersion is taken into account. The stability of a soliton is proved for fourth order dispersion using the sign-definiteness of the operator and integral estimates of the Sobolev type. This proof is based on the boundedness of the Hamiltonian for a fixed value of the pulse energy.


Radiation Soliton Dielectric Constant Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. S. Gardner, J. M. Green, M. D. Kruskal, and R. B. Miura, Phys. Rev. Lett. 19, 1095 (1967)CrossRefADSGoogle Scholar
  2. 2.
    V. E. Zakharov and A. B. Shabat, Zh. Éksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].Google Scholar
  3. 3.
    A. Hasegawa and F. Tappet, Appl. Phys. Lett. 23, 142 (1973).Google Scholar
  4. 4.
    L. F. Mollenauer, R. H. Stolen, and M. N. Islam, Opt. Lett. 10, 229 (1985).ADSGoogle Scholar
  5. 5.
    L. F. Mollenauer, E. Lichtman, M. J. Neibelt, and G. T. Harvey, Electron. Lett. 29, 910 (1993).Google Scholar
  6. 6.
    G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Boston (1989) [Russ. transl., Mir, Moscow (1996)].Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Oxford (1984).Google Scholar
  8. 8.
    S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: the Inverse Scattering Method, Consultants Bureau, New York (1984).Google Scholar
  9. 9.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1985).Google Scholar
  10. 10.
    A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985).Google Scholar
  11. 11.
    M. S. Longuet-Higgins, J. Fluid Mech. 200, 951 (1989); 252, 703 (1993).MathSciNetGoogle Scholar
  12. 12.
    G. Iooss and K. Kirchgassner, C. R. Acad. Sci., Ser. I: Math. 311, 265 (1991).MathSciNetGoogle Scholar
  13. 13.
    J.-M. Vanden-Broeck and F. Dias, J. Fluid Mech. 240, 549 (1992); F. Dias and G. Iooss, Physica D 65, 399 (1993).ADSMathSciNetGoogle Scholar
  14. 14.
    V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk. 167, 1137 (1997) [Phys. Usp. 40, 1087 (1997)].Google Scholar
  15. 15.
    N. Bloembergen, Nonlinear Optics, Benjamin, Reading, Mass. (1977).Google Scholar
  16. 16.
    J. Nycander, Chaos 4, 253 (1994).CrossRefADSGoogle Scholar
  17. 17.
    E. M. Gromov and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 39, 735 (1996); Zh. Éksp. Teor. Fiz. 110, 137 (1996) [JETP 83, 79 (1996)].MathSciNetGoogle Scholar
  18. 18.
    R. Hirota, J. Phys. Soc. Jpn. 33, 1456 (1973); J. Math. Phys. 14, 805 (1973).Google Scholar
  19. 19.
    V. K. Mezentsev and S. K. Turitsyn, Sov. J. Quantum Electron. 21, 555 (1991); Sov. Lightwave Commun. 1, 263 (1991).CrossRefGoogle Scholar
  20. 20.
    M. Klauder, W. Laedke, K. H. Spatschek, and S. K. Turitsyn, Phys. Rev. E 47, R3844 (1993).Google Scholar
  21. 21.
    E. A. Kuznetsov, A. N. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Gordon and Breach, New York (1969).Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • V. E. Zakharov
    • 1
  • E. A. Kuznetsov
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations