Effect of four-photon interactions on coherent population trapping in Λ-systems

  • B. A. Grishanin
  • V. N. Zadkov
  • D. Meschede
Atoms, Spectra, Radiation


The resonance fluorescence spectrum of a Λ-system excited by two resonant light fields is calculated using a Markov analysis. Analytical formulas are derived in the strong-field limit within and beyond the rotating wave approximation. It is shown that the resonance fluorescence of the system does not vanish during coherent population trapping. Its spectrum consists of two multiplets which are similar to a triplet in the resonance fluorescence spectrum of a two-level atom and lie at the electronic transition frequencies, together with two triplets located at the frequencies of four-photon processes involving the optical excitation fields. The latter are fundamental in character and impose limits on the lower bound of the dephasing rate for the Raman resonance owing to the effect of radiative decay of the dipole transitions on the dynamics of the ground state. The effect of four-photon dephasing on the absorption spectrum of a Λ-system is analyzed and found to lead to a substantial reduction in the depth of a dip in the absorption spectrum which vanishes as the laser field strength is increased.


Dipole Transition Light Field Laser Field Radiative Decay Optical Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Usp. Fiz. Nauk 163, 1 (1993).Google Scholar
  2. 2.
    E. Arimondo, Progress in Optics 35, 257 (1996).Google Scholar
  3. 3.
    M. R. Ferguson, Z. Ficek, and B. J. Dalton, Phys. Rev. A 54, 2379 (1996).CrossRefADSGoogle Scholar
  4. 4.
    L. M. Narducci, M. O. Scully, G.-L. Oppo, R. Pu, and J. R. Tredicce, Phys. Rev. A 42, 1630 (1990).CrossRefADSGoogle Scholar
  5. 5.
    B. A. Grishanin, Kvant. Elektrodinamika 6, 1649 (1979).Google Scholar
  6. 6.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press (1995).Google Scholar
  7. 7.
    B. R. Mollow, Phys. Rev. 188, 1969 (1969).CrossRefADSGoogle Scholar
  8. 8.
    I. R. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).Google Scholar
  9. 9.
    R. Glauber, in Quantum Optics and Electronics, Gordon and Breach, N.Y. (1965), p. 63.Google Scholar
  10. 10.
    B. A. Grishanin, Quantum Electrodynamics for Radio Physicists [in Russian], Izd-vo. Mosk. Un-ta., Moscow (1981).Google Scholar
  11. 11.
    Van M. Lu, G. Mainfray, C. Manus, and I. Tugov, Phys. Rev. A 7, 91 (1973).ADSGoogle Scholar
  12. 12.
    O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Phys. Rev. A 54, R27 (1996); S. Brandt, A. Nagel, R. Wynands, and D. Meschede, Phys. Rev. A 56, R1063 (1997).CrossRefADSGoogle Scholar
  13. 13.
    E. Arimondo, Phys. Rev. A 54, 2216 (1996).CrossRefADSGoogle Scholar
  14. 14.
    D. J. Gauthier, Y. Zhu, and T. W. Mossberg, Phys. Rev. Lett. 66, 2460 (1991).CrossRefADSGoogle Scholar
  15. 15.
    Y. Stalgies, I. Siemers, B. Appasamy, and P. E. Toschek, Europhys. Lett. 35, 259 (1996).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • B. A. Grishanin
    • 1
  • V. N. Zadkov
    • 1
  • D. Meschede
    • 2
  1. 1.International Laser CenterM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institut für Angewandte Physik der Universität BonnBonnGermany

Personalised recommendations