Advertisement

Journal of Experimental and Theoretical Physics

, Volume 85, Issue 5, pp 1039–1047 | Cite as

Nonsingular skyrmions for Landau levels with odd occupation number in a two-dimensional system

  • S. V. Iordanskii
  • S. G. Plyasunov
Solids

Abstract

The number of particles, energy and other physical parameters in the presence of a skyrmion vortex have been calculated using the gradient expansion technique. Unlike other researchers, we have not used the approximation of functions projected on a single Landau level. If other Landau levels are included in the scheme, we have a simple physical model and a substantially modified expression for the skyrmion energy. Generation of one skyrmion is thermodynamically favorable, so they should emerge spontaneously near odd-integer filling factors.

Keywords

Spectroscopy Vortex State Physics Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sondhi, A. Kahlrede, S. Kivelson, and E. Rezai, Phys. Rev. B 47, 16418 (1993).Google Scholar
  2. 2.
    H. Fertig, L. Brey, R. Cote, and A. MacDonald, Phys. Rev. B 50, 11018 (1994).Google Scholar
  3. 3.
    K. Moon, H. Mori, Kun Yang, S. Girvin, and A. MacDonald, Phys. Rev. B 51, 5138 (1995).CrossRefADSGoogle Scholar
  4. 4.
    Yu. Bychkov, T. Maniv, and I. Vagner, Phys. Rev. B 53, 10148 (1995).Google Scholar
  5. 5.
    W. Apel and Yu. Bychkov, Phys. Rev. Lett. 78, 2188 (1997).CrossRefADSGoogle Scholar
  6. 6.
    G. Volovik and V. Yakovenko, E-prints Archive Cond-Mat/9703228, 26 March, 1997.Google Scholar
  7. 7.
    S. Barret, G. Dabbagh, L. Pfeiffer, K. West, and R. Tycko, Phys. Rev. Lett. 74, 5112 (1995).ADSGoogle Scholar
  8. 8.
    I. Kukushkin, K. von Klitzing, and K. Eberl, Phys. Rev. B 55(16), (1997).Google Scholar
  9. 9.
    S. Iordanskii and S. Plyasunov, JETP Lett. 65, 259 (1997).ADSGoogle Scholar
  10. 10.
    M. Salomaa and G. Volovik, Rev. Mod. Phys. 59, 533 (1987).CrossRefADSGoogle Scholar
  11. 11.
    A. Abrikosov, L. Gor’kov, and I. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall, Englewood Cliffs, NJ (1963).Google Scholar
  12. 12.
    F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    G. Volovik and V. Yakovenko, J. Phys.: Condens. Matter 1, 5263 (1989).CrossRefADSGoogle Scholar
  14. 14.
    V. Ruutu, U. Parts, J. Koivuniemi, M. Krusius, E. Thunenberg, and G. Volovik, JETP Lett. 60, 671 (1994).ADSGoogle Scholar
  15. 15.
    Yu. Makhlin and T. Misirpashaev, JETP Lett. 61, 49 (1995).ADSGoogle Scholar
  16. 16.
    K. Jain, Phys. Rev. Lett. 63, 199 (1989).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • S. V. Iordanskii
    • 1
  • S. G. Plyasunov
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations