Advertisement

Journal of Experimental and Theoretical Physics

, Volume 85, Issue 5, pp 1024–1034 | Cite as

de Haas-van Alphen effect in superconductors

  • M. G. Vavilov
  • V. P. Mineev
Solids

Abstract

A theory of the de Haas-van Alphen effect in type-II superconductors is proposed. The effect of the electron scattering by nonmagnetic impurities in a magnetic field in the potential produced by a nonuniform distribution of the order parameter in a mixed state is investigated. The magnitude of the order parameter and quasiparticle density of states are determined from the solution of the system of Gor’kov equations. It is shown that in the presence of even a small amount of impurities, the superconducting state near the upper critical field is gapless. In this region, the oscillatory (in the magnetic field) contribution to the density of states and the characteristic damping of the amplitude of the magnetization oscillations in the superconducting state are found.

Keywords

Spectroscopy Magnetic Field State Physics Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Lifshitz and A. M. Kosevich, Zh. Éksp. Teor. Fiz. 29, 730 (1955).Google Scholar
  2. 2.
    Yu. A. Bychkov, Zh. Éksp. Teor. Fiz. 39, 1401 (1961) [Sov. Phys. JETP 12, 977 (1961)].Google Scholar
  3. 3.
    R. Corcoran, N. Harrison, S. M. Hayden, P. Meeson, M. Springfield, and P. J. van der Wel, Phys. Rev. Lett. 72, 701 (1994).CrossRefADSGoogle Scholar
  4. 4.
    N. Harrison, S. M. Hayden, P. Meeson, M. Springfield, P. J. van der Wel, and A. A. Menovsky, Phys. Rev. B 50, 4208 (1994).ADSGoogle Scholar
  5. 5.
    G. Goll, M. Heinecke, A. J. M. Jansen, W. Jess, L. Nguyen, E. Steep, K. Winzer, and P. Wyber, Phys. Rev. B 53, 8871 (1996).CrossRefADSGoogle Scholar
  6. 6.
    R. Corcoran, N. Harrison, C. J. Haworth et al., Physica B 206–207, 534 (1995).Google Scholar
  7. 7.
    M. Springford and A. Wasserman, J. Low Temp. Phys. 105, 273 (1996).CrossRefGoogle Scholar
  8. 8.
    K. Maki, Phys. Rev. B 44, 2861 (1991).CrossRefADSGoogle Scholar
  9. 9.
    M. J. Stephen, Phys. Rev. B 45, 5481 (1992).CrossRefADSGoogle Scholar
  10. 10.
    U. Brandt, W. Pesch, and L. Tewordt, Z. Physik 201, 209 (1967).CrossRefGoogle Scholar
  11. 11.
    S. Dukan and Z. Tesanovic, Phys. Rev. Lett. 74, 2311 (1995).CrossRefADSGoogle Scholar
  12. 12.
    P. Miller and B. L. Gyorffy, J. Phys.: Condens. Matter 7, 5579 (1995).CrossRefADSGoogle Scholar
  13. 13.
    K. Miyake, Physica B 186–188, 115 (1993).Google Scholar
  14. 14.
    M. Rasolt and Z. Tesanovich, Rev. Mod. Phys. 64, 709 (1992).CrossRefADSGoogle Scholar
  15. 15.
    V. M. Yakovenko, Phys. Rev. B 47, 8851 (1993).CrossRefADSGoogle Scholar
  16. 16.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics [in Russian], Fizmatgiz, Moscow (1962) [Prentice-Hall, Englewood Cliffs, N. J. (1963)].Google Scholar
  17. 17.
    Yu. A. Bychkov and E. I. Rashba, Zh. Éksp. Teor. Fiz. 85, 1826 (1983) [Sov. Phys. JETP 58, 1062 (1983)].ADSGoogle Scholar
  18. 18.
    I. W. Gruenberg and L. Gunther, Phys. Rev. 176, 606 (1968).CrossRefADSGoogle Scholar
  19. 19.
    E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • M. G. Vavilov
    • 1
  • V. P. Mineev
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsChernogolovka, Moscow RegionRussia

Personalised recommendations