Advertisement

Journal of Experimental and Theoretical Physics

, Volume 85, Issue 6, pp 1225–1232 | Cite as

Generation of soliton packets in a two-level laser

  • A. A. Zabolotskii
Nonlinear Physics
  • 19 Downloads

Abstract

A variant of perturbation theory is constructed for a system of nearly integrable equations. Perturbations of a special type are considered, which makes it possible to represent the system in the form of compatibility condition for “deformed” linear systems. The corresponding deformation of the Whitham equations is found. The mathematical apparatus is used to theoretically examine the generation of a sequence of solitons in a two-level laser. The generation process is described by a system of Maxwell-Bloch equations with pumping of the upper level and with allowance for some relaxation effects. The dynamics of the transformation of the initial perturbation into a sequence of solitons under pumping is studied. Finally, the various generation regimes are analyzed and compared with the experimental data.

Keywords

Spectroscopy Experimental Data State Physics Soliton Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).Google Scholar
  2. 2.
    A. I. Maimistov, A. M. Basharov, S. O. Elyutin, and Yu. M. Sklyarov, Phys. Rep. 191, 1 (1991).ADSGoogle Scholar
  3. 3.
    A. C. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, Redwood City, CA (1992).Google Scholar
  4. 4.
    A. A. Apolonsky, A. A. Zabolotskii, V. P. Drachev, and E. I. Zinin, Proc. SPIE 2041, 385 (1993).ADSGoogle Scholar
  5. 5.
    S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Consultants Bureau, New York (1984).Google Scholar
  6. 6.
    S. V. Manakov, Zh. Éksp. Teor. Fiz. 83, 68 (1982) [Sov. Phys. JETP 56, 37 (1982)].ADSGoogle Scholar
  7. 7.
    I. R. Gabitov, V. E. Zakharov, and A. V. Mikhailov, JETP Lett. 37, 279 (1983).ADSGoogle Scholar
  8. 8.
    I. R. Gabitov, V. E. Zakharov, and A. V. Mikhailov, Zh. Éksp. Teor. Fiz. 86, 1204 (1984) [Sov. Phys. JETP 59, 703 (1984)].ADSGoogle Scholar
  9. 9.
    I. R. Gabitov, V. E. Zakharov, and A. V. Mikhailov, Teor. Mat. Fiz. 63, 11 (1985).MathSciNetGoogle Scholar
  10. 10.
    S. V. Manakov and V. Yu. Novokshenov, Teor. Mat. Fiz. 69, 40 (1986).Google Scholar
  11. 11.
    I. R. Gabitov and S. V. Manakov, Phys. Rev. Lett. 50, 495 (1983).CrossRefADSGoogle Scholar
  12. 12.
    H. Steudel, Quantum Opt. 2, 387 (1990).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    D. J. Kaup and C. R. Menyuk, Phys. Rev. A 42, 1712 (1990).ADSGoogle Scholar
  14. 14.
    C. R. Menyuk, Phys. Rev. A 47, 2235 (1993).CrossRefADSGoogle Scholar
  15. 15.
    G. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).Google Scholar
  16. 16.
    S. P. Burtsev, A. V. Mikhailov, and V. E. Zakharov, Teor. Mat. Fiz. 70, 323 (1987).MathSciNetGoogle Scholar
  17. 17.
    V. A. Belinskii and V. E. Zakharov, Zh. Éksp. Teor. Fiz. 75, 1955 (1978) [Sov. Phys. JETP 48, 985 (1978)].ADSMathSciNetGoogle Scholar
  18. 18.
    V. A. Belinskii and V. E. Zakharov, Zh. Éksp. Teor. Fiz. 77, 3 (1979) [Sov. Phys. JETP 50, 1 (1979)].ADSMathSciNetGoogle Scholar
  19. 19.
    A. V. Mikhailov and A. I. Yaremchuk, JETP Lett. 36, 95 (1982).ADSGoogle Scholar
  20. 20.
    A. V. Mikhailov and A. I. Yaremchuk, Nucl. Phys. B 82, 202 (1982).MathSciNetGoogle Scholar
  21. 21.
    V. A. Marchenko, Mat. Sb. (N.S.) 95, 331 (1974).zbMATHMathSciNetGoogle Scholar
  22. 22.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russian Math. Surveys 31, 59 (1976); E. Date and S. Tanaka, Prog. Theor. Phys. Suppl. 59, 107 (1976); E. Date, Prog. Theor. Phys. 59, 265 (1978).CrossRefMathSciNetGoogle Scholar
  23. 23.
    H. Flaschka, M. G. Forest, and D. W. McLaughlin, Commun. Pure Appl. Math. 68, 739 (1980).ADSMathSciNetGoogle Scholar
  24. 24.
    M. G. Forest and D. W. McLaughlin, J. Math. Phys. 27, 1248 (1982).ADSMathSciNetGoogle Scholar
  25. 25.
    A. M. Kamchatnov and M. V. Pavlov, Zh. Éksp. Teor. Fiz. 107, 44 (1995) [JETP 80, 22 (1995)].Google Scholar
  26. 26.
    A. M. Kamchatnov, submitted to Phys. Rep. 1997).Google Scholar
  27. 27.
    S. P. Burtsev, I. R. Gabitov, and V. E. Zakharov, in Plasma Theory and Nonlinear and Turbulent Processes in Physics, World Scientific, Singapore (1988), p. 897.Google Scholar
  28. 28.
    Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematics Series 55, Washington, D.C. (1964).Google Scholar
  29. 29.
    A. A. Apolonskii, Opt. Spektrosk. 61, 564 (1986) [Opt. Spectrosc. 61, 564 (1986)].ADSGoogle Scholar
  30. 30.
    A. A. Zabolotskii, Physica D 40, 283 (1989).CrossRefADSzbMATHMathSciNetGoogle Scholar
  31. 31.
    A. A. Zabolotskii, Phys. Rev. A 50, 3384 (1994).CrossRefADSGoogle Scholar
  32. 32.
    S. P. Burtsev and I. R. Gabitov, Phys. Rev. A 49, 2065 (1994).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • A. A. Zabolotskii
    • 1
  1. 1.Institute of Automation and ElectrometrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations