Journal of Experimental and Theoretical Physics

, Volume 85, Issue 6, pp 1180–1186 | Cite as

Effect of electroelastic anisotropy of DNA-like molecules on their tertiary structure

  • V. L. Golo
  • Yu. M. Evdokimov
  • E. I. Kats


Under certain conditions, mechanical forces can cause an anisotropic molecule like DNA to assume a toroidal spatial structure. A simple model describing such a behavior is suggested. The model incorporates anisotropic elastic energy and external electrical forces. The steady-state structures formed by a macromolecule have been studied numerically using this model. There exist ranges of model parameters, namely, the anisotropy of the elastic tensor, magnitude and orientation of forces, and modulation periods, where molecules have toroidal, spherical, or extended structures. Estimates of parameters characteristic of these structures are consistent with experimental data. In particular, the toroidal structure dimension corresponds to experimental dimensions of toroidal globules produced as a result of so-called PSI condensation of DNA molecules.


Anisotropy Elementary Particle Macromolecule Spatial Structure Elastic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Saenger, Principles of Nucleic Acid Structure, Springer, New York (1984).Google Scholar
  2. 2.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules, AIP Press, New York (1994).Google Scholar
  3. 3.
    L. S. Lerman, Proc. Natl. Acad. Sci. USA 68, 1886 (1971).ADSGoogle Scholar
  4. 4.
    Y. M. Evdokimov, A. L. Platonov, A. S. Tikhonenko, and Y. M. Varshavsky, Fed. Europ. Biochem. Soc. Lett. 23, 180 (1972); Yu. M. Evdokimov, N. M. Akimenko, N. E. Glukhova, A. S. Tikhonenko, and Ya. M. Varshavskii, Mol. Biol. 7, 151 (1973).Google Scholar
  5. 5.
    U. Laemmli, Proc. Natl. Acad. Sci. USA 72, 4288 (1975).ADSGoogle Scholar
  6. 6.
    M. Aosule and J. A. Schellman, J. Mol. Biol. 121, 311 (1978).Google Scholar
  7. 7.
    A. Yu. Grosberg, Biofizika 24, 32 (1979).Google Scholar
  8. 8.
    A. Yu. Grosberg and A. V. Zhestkov, Biofizika 30, 698 (1985).Google Scholar
  9. 9.
    I. M. Lifshits, Zh. Éksp. Teor. Fiz. 55, 2408 (1968) [Sov. Phys. JETP 28, 1280 (1969)].Google Scholar
  10. 10.
    G. S. Manning, Biopolymers 20, 1261 (1981).Google Scholar
  11. 11.
    G. S. Manning, Comments Mol. Cell. Biophys. 5, 311 (1982).Google Scholar
  12. 12.
    J. Ubbink and T. Odijk, Biophys. J. 68, 54 (1995).Google Scholar
  13. 13.
    V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41, 51 (1997).CrossRefGoogle Scholar
  14. 14.
    P. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, USA (1979).Google Scholar
  15. 15.
    G. S. Manning, in Theoretical Chemistry and Molecular Biophysics, ed. by D. L. Beveridge and R. Lavery, Adenine Press, New York (1990), p. 191.Google Scholar
  16. 16.
    M. O. Fenley, G. S. Manning, and W. K. Olson, Biopolymers 30, 1191 (1990).Google Scholar
  17. 17.
    G. S. Manning, Biopolymers 31, 1543 (1991).CrossRefGoogle Scholar
  18. 18.
    G. S. Manning, J. Biomolec. Structure and Dynamics 7, 41 (1989).Google Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford (1980).Google Scholar
  20. 20.
    J. F. Marko and E. D. Siggia, Macromolecules 27, 981 (1994).CrossRefGoogle Scholar
  21. 21.
    V. L. Golo and E. I. Kats, JETP Lett. 60, 679 (1994).ADSGoogle Scholar
  22. 22.
    G. Kirchhoff, Mechanik, Tenbnir, Berlin (1897).Google Scholar
  23. 23.
    M. Lebret, J. Chem. Phys. 76, 6243 (1982).ADSGoogle Scholar
  24. 24.
    K. Zakrewska and B. Pullman, Nucl. Acids Research 11, 8841 (1983).Google Scholar
  25. 25.
    K. Zakrewska, R. Lavery, and B. Pullman, Nucl. Acids Research 11, 8825 (1983).Google Scholar
  26. 26.
    Yu. M. Evdokimov, T. L. Pyatigorskaya, O. F. Polyvtsev et al., Nucl. Acids Research 3, 2353 (1976).Google Scholar
  27. 27.
    S. C. Riemer and V. A. Bloomfield, Biopolymers 17, 785 (1978).CrossRefGoogle Scholar
  28. 28.
    T. J. Richmond, J. T. Finch, B. Rushton, D. Rhodes, and A. Klug, Nature (London) 311, 532 (1984).CrossRefGoogle Scholar
  29. 29.
    K. K. Ebralidse, S. A. Grachev, and A. D. Mirzabekov, Nature (London) 331, 365 (1988).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • V. L. Golo
    • 1
  • Yu. M. Evdokimov
    • 2
  • E. I. Kats
    • 3
  1. 1.Mechanico-Mathematical Department of M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations