Advertisement

Influence of a nonmagnetic impurity on the properties of the quasi-one-dimensional antiferromagnet CsNiCl3

  • S. S. Sosin
  • I. A. Zaliznyak
  • L. A. Prozorova
  • Yu. M. Tsipenyuk
  • S. V. Petrov
Solids

Abstract

Various magnetic properties of the diluted quasi-one-dimensional antiferromagnet CsNi1−xMgxCl3 are investigated experimentally for several impurity concentrations. The antiferromagnetic resonance spectrum and the phase diagrams are found to depend significantly on the amount of added Mg. The field and temperature dependences of the static magnetization is measured for crystals with two different contents x. A substantial increase in the magnetization is observed at low temperature, where the additional susceptibility is approximately proportional to the concentration. The physical mechanisms underlying the observed strong influence of magnetic defects formed at breaks in the spin chains in a quasi-one-dimensional antiferromagnet on its magnetic properties in the ordered state and for T<TN are discussed.

Keywords

Spectroscopy State Physics Phase Diagram Field Theory Magnetic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 49, 799 (1987).ADSGoogle Scholar
  3. 3.
    E. Lieb and D. Mattis, J. Math. Phys. (N.Y.) 3, 749 (1962).CrossRefGoogle Scholar
  4. 4.
    S. H. Glarum, S. Geschwind, K. M. Lee et al., Phys. Rev. Lett. 67, 1614 (1991).CrossRefADSGoogle Scholar
  5. 5.
    M. Hagiwara, K. Katsumata, I. Affleck et al., Phys. Rev. Lett. 65, 3181 (1990).CrossRefADSGoogle Scholar
  6. 6.
    N. Fujiwara, J. R. Jeitler, C. Navas et al., J. Magn. Magn. Mater. 140–144, 1663 (1995); H. Deguchi, S. Takagi, M. Ito, and K. Takeda, J. Phys. Soc. Jpn. 64, 22 (1995); H. Kikuchi, Y. Ajiro, N. Mori et al., Physica B 201, 186 (1994).Google Scholar
  7. 7.
    A. P. Ramirez, S.-W. Cheong, and M. L. Kaplan, Phys. Rev. Lett. 72, 3108 (1994).CrossRefADSGoogle Scholar
  8. 8.
    I. Ya. Korenblit and E. F. Shender, Phys. Rev. B 43, 9478 (1993).ADSGoogle Scholar
  9. 9.
    J. Ackerman and E. M. Holt, J. Solid State Chem. 9, 308 (1974).CrossRefGoogle Scholar
  10. 10.
    I. A. Zaliznyak, V. I. Marchenko, S. V. Petrov et al., JETP Lett. 47, 211 (1988).ADSGoogle Scholar
  11. 11.
    I. A. Zaliznyak, Solid State Commun. 34, 573 (1992).Google Scholar
  12. 12.
    N. Achiwa, J. Phys. Soc. Jpn. 27, 561 (1969).Google Scholar
  13. 13.
    M. Poirier, A. Caille, and M. L. Plumer, Phys. Rev. B 41, 4869 (1990).CrossRefADSGoogle Scholar
  14. 14.
    Y. Trudeau, M. L. Plumer, M. Poirier, and J. Takeuchi, Phys. Rev. B 52, 378 (1995).CrossRefADSGoogle Scholar
  15. 15.
    G. T. Rado and H. Suhl (eds.), Magnetism, Vol. 3, Academic Press, New York (1963).Google Scholar
  16. 16.
    L. N. Bulaevskii, Solid State Phys. 11, 1143 (1969).Google Scholar
  17. 17.
    A. F. Andreev and V. I. Marchenko, Usp. Fiz. Nauk 130, 39 (1980) [Sov. Phys. Usp. 23, 21 (1980)].Google Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • S. S. Sosin
    • 1
  • I. A. Zaliznyak
    • 1
  • L. A. Prozorova
    • 1
  • Yu. M. Tsipenyuk
    • 1
  • S. V. Petrov
    • 1
  1. 1.P. L. Kapitza Institute of Physics ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations