Journal of Experimental and Theoretical Physics

, Volume 84, Issue 6, pp 1149–1163

The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons

  • A. I. Bezuglyi
  • V. A. Shklovskii


The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by “hot” electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Phys. Rev. Lett. 58, 1212 (1987).CrossRefADSGoogle Scholar
  2. 2.
    R. W. Schoenlien, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Phys. Rev. Lett. 58, 1680 (1987).ADSGoogle Scholar
  3. 3.
    S. D. Brorson, A. Kazeroonian, J. S. Modera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990).CrossRefADSGoogle Scholar
  4. 4.
    M. I. Kaganov, I. M. Lifshits, and L. V. Tanatarov, Zh. Éksp. Teor. Fiz. 31, 232 (1956) [Sov. Phys. JETP 4, 173 (1957)].Google Scholar
  5. 5.
    V. A. Shklovskii, Pis’ma Zh. Éksp. Teor. Fiz. 26, 679 (1977); Zh. Éksp. Teor. Fiz. 78, 1281 (1980) [Sov. Phys. JETP 51, 646 (1980)].Google Scholar
  6. 6.
    V. A. Shklovskij, J. Low Temp. Phys. 41, 375 (1980).CrossRefGoogle Scholar
  7. 7.
    K. V. Maslov and V. A. Shklovskii, Zh. Éksp. Teor. Fiz. 71, 1514 (1976) [Sov. Phys. JETP 44, 792 (1976)]; Zh. Éksp. Teor. Fiz. 78, 3 (1980) [Sov. Phys. JETP 51, 1 (1980)].Google Scholar
  8. 8.
    M. I. Kaganov and V. G. Peschanskii, Zh. Éksp. Teor. Fiz. 33, 1261 (1957) [Sov. Phys. JETP 6, 970 (1958)].Google Scholar
  9. 9.
    G. Bergmann, W. Wei, Y. Zou, and R. M. Mueller, Phys. Rev. B 41, 7386 (1990).CrossRefADSGoogle Scholar
  10. 10.
    E. M. Gershenzon, M. E. Gershenzon, G. N. Gol’tsman, A. M. Lyul’kin, A. D. Semenov, and A. V. Sergeev, Zh. Éksp. Teor. Fiz. 97, 901 (1990) [Sov. Phys. JETP 70, 505 (1990)].Google Scholar
  11. 11.
    A. W. Little, Can. J. Phys. 37, 334 (1959).ADSGoogle Scholar
  12. 12.
    P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).CrossRefADSGoogle Scholar
  13. 13.
    N. Perrin and H. Budd, Phys. Rev. Lett. 28, 1701 (1972).ADSGoogle Scholar
  14. 14.
    D. Belitz, Phys. Rev. B 36, 2513 (1987).ADSGoogle Scholar
  15. 15.
    D. Pines, Elementary Excitations in Solids, W. A. Benjamin, New York (1963).Google Scholar
  16. 16.
    E. M. Gershenzon, G. N. Gol’tsman, A. I. Elant’ev, B. S. Karasik, and S. E. Potoskuev, Fiz. Nizk. Temp. 14, 753 (1988) [Sov. J. Low Temp. Phys. 14, 414 (1988)].ADSGoogle Scholar
  17. 17.
    G. Bergmann, Phys. Rep. 27, 159 (1976).CrossRefADSGoogle Scholar
  18. 18.
    J. J. Lin and C. E. Wu, Europhys. Lett. 29, 141 (1995).Google Scholar
  19. 19.
    W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, Phys. Rev. B 46, 13592 (1992).Google Scholar
  20. 20.
    C.-K. Sun, F. Vallee, L. Acioli, E. P. Ippen, and J. G. Fujimoto, Phys. Rev. B 48, 12365 (1993).Google Scholar
  21. 21.
    S. B. Kaplan, J. Low Temp. Phys. 37, 343 (1979).CrossRefGoogle Scholar
  22. 22.
    A. I. Bezuglyj and V. A. Shklovskij, Physica C 202, 234 (1992).CrossRefADSGoogle Scholar
  23. 23.
    G. Bergmann, Solid State Commun. 46, 347 (1983).CrossRefADSGoogle Scholar
  24. 24.
    G. Bergmann, Phys. Rep. 107, 1 (1984).CrossRefADSGoogle Scholar
  25. 25.
    S. J. Dorozhkin, F. Lell, and W. Shoepe, Solid State Commun. 60, 245 (1986).CrossRefGoogle Scholar
  26. 26.
    E. M. Gershenzon, M. E. Gershenzon, G. N. Gol’tsman et al., Zh. Éksp. Teor. Fiz. 86, 758 (1984) [Sov. Phys. JETP 59, 442 (1984)].Google Scholar
  27. 27.
    A. L. Shi, G. L. Huang, C. Lehane, D. Kim, H. S. Kwok, J. Swiatkiewicz, G. C. Xu, and P. N. Prasad, Phys. Rev. B 48, 6550 (1993).ADSGoogle Scholar
  28. 28.
    N. Bluzer, Phys. Rev. B 44, 10222 (1991).Google Scholar
  29. 29.
    N. Bluzer, J. Appl. Phys. 71, 1336 (1992).CrossRefADSGoogle Scholar
  30. 30.
    N. Bluzer, Phys. Rev. B 46, 1033 (1992).CrossRefADSGoogle Scholar
  31. 31.
    A. V. Sergeev, A. D. Semyonov, P. Kouminov, V. Trifonov, I. G. Goghidze, B. S. Karasik, G. N. Gol’tsman, and E. M. Gershenzon, Phys. Rev. B 49, 9091 (1994).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • A. I. Bezuglyi
    • 1
  • V. A. Shklovskii
    • 1
  1. 1.Khar’kov Physicotechnical Institute, National Scientific CenterKhar’kovUkraine

Personalised recommendations