Partial suppression of hydrodynamic mixing in profiled shells

  • N. A. Inogamov


The problems of stability and mixing are important in the physics of high-energy densities. Ablation-induced acceleration of foils and compression of liners entail loss of symmetry and the development of instability. The most destructive instability is the fundamental f mode, which conserves the pressure in Lagrangian particles. A means has been proposed to eliminate this dangerous mode, based on special profiling of the mass distribution among the subshells. The presence of this mode has led to novel proposals for limiting the degree of instability and optimization of the shells by profiling in the important case of very large density ratios at the ablation front. The solution is based on a class of new polytropes with an inverted density profile and a negative polytrope index N. In this class the density ρ of the material does not decrease towards the boundary with the vacuum, as for ordinary polytropes with N>0, but rather increases. This permits modeling multilayer distributions of ρ typical of inertial confinement fusion systems in which the high-density subshells form an inner core surrounding a low-pressure cavity, and the outer layers are made from low-density materials (plastic, foam type materials, composites). It is emphasized that the distributions are self-similar, and hence both the linear and the turbulent dynamics are scale-invariant. The spectral problem of perturbations in an incompressible fluid has a hidden symmetry. Isospectral deformations of the density profile I{ρ0(y)} are known that leave the spectrum unchanged. It is of interest to apply the transformation I to the invariant f± modes, since they are not tied to any specific profile of ρ0(y). This paper analyzes a new type of invariant mode obtained in this way.


Foam Density Profile Incompressible Fluid Inner Core Lagrangian Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Nuckolls, L. Wood, X. Thiessen, and G. B. Zimmermann, Nature 239, 139 (1972).CrossRefGoogle Scholar
  2. 2.
    K. A. Brueckner and S. Jorna, Rev. Mod. Phys. 46, 325 (1974).CrossRefADSGoogle Scholar
  3. 3.
    A. M. Prokhorov, S. I. Aniskimov, and P. P. Pashinin, Usp. Fiz. Nauk 119, 401 (1976) [Sov. Phys. Usp. 19, 547 (1976)].Google Scholar
  4. 4.
    S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, Usp. Fiz. Nauk 142, 395 (1984) [Sov. Phys. Usp. 27, 181 (1984).Google Scholar
  5. 5.
    J. D. Lindl, R. L. McCrory, and M. Campbell, Phys. Today 45(9), 32 (1992).Google Scholar
  6. 6.
    S. Yu. Gus’kov, N. V. Zmitrenko, and V. B. Rozanov, Zh. Éksp. Teor. Fiz. 108, 548 (1995) [JETP 81, 296 (1995)].Google Scholar
  7. 7.
    S. W. Haan, S. M. Pollaine, J. D. Lindl et al., Phys. Plasmas 2, 2480 (1995).CrossRefADSGoogle Scholar
  8. 8.
    R. McEachern, C. Moore, G. E. Overturf et al., “Inertial Confinement Fusion” ICF Quarterly Report. LLNL 4, 25 (1993).Google Scholar
  9. 9.
    S. A. Letts, G. W. Collins, E. M. Fearon et al., “Inertial Confinement Fusion” ICF Quarterly Report. LLNL 4, 54 (1994).Google Scholar
  10. 10.
    N. A. Inogamov, Dokl. Akad. Nauk SSSR 278, 57 (1984) [Sov. Phys. Dokl. 29, 714 (1984)].ADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    W. Unno, Y. Osaki, H. Ando, and H. Shibahashi, Nonradial Oscillations of Stars (University of Tokyo Press, Tokio, 1979).Google Scholar
  12. 12.
    J. P. Cox, Theory of Stellar Pulsation (Princeton University Press, Princeton New Jersey, 1980).Google Scholar
  13. 13.
    K. O. Mikaelian, Phys. Rev. Lett. 48, 1365 (1982).CrossRefADSGoogle Scholar
  14. 14.
    R. N. Ardashova, S. I. Balabin, N. P. Voloshin, Yu. A. Kucherenko et al., in Vopr. Atom. Nauki Tekh. Ser. Teor. Prikl. Fiz. No. 1, 20 (1988).Google Scholar
  15. 15.
    H. Takabe, K. Mima, L. Montierth, and R. L. Morse, Phys. Fluids 28, 3676 (1985).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    H. Lamb, Hydrodynamics (Dover Publications, New York, 1945), Ch. X.Google Scholar
  17. 17.
    C. L. Pekeris, Phys. Rev. 73, 145 (1948).CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    A. Skumanich, Astrophys. J. 121, 408 (1955).ADSMathSciNetGoogle Scholar
  19. 19.
    J. Christensen-Dalsgaard, Monthly Notes Royal Astronomical Soc. 190 765 (1980).ADSGoogle Scholar
  20. 20.
    J. Christensen-Dalsgaard, D. O. Cough, and J. Toomre, Science 229, 923 (1985).ADSGoogle Scholar
  21. 21.
    N. A. Inogamov, Zh. Éksp. Teor. Fiz. 110, 559 (1996) [JETP 83, 299 (1996)].Google Scholar
  22. 22.
    L. J. Slater, in Handbook of Mathematical Functions, NBS Appl Math. Ser. No 55, edited by M. Abramowitz and I. A. Stegun, Washington DC, GPO (1964).Google Scholar
  23. 23.
    Mathematical Encyclopedia [in Russian] edited by I. M. Vinogradov et al., (Sov. Entsikopediya, Moscow, 1977), Vol. 1.Google Scholar
  24. 24.
    K. O. Mikaelian, Phys. Rev. A 26, 2140 (1982).CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    N. A. Inogamov, in Problems of Dynamics and Stable Plasmas [in Russian] (Moscow Physicotechnical Institute (MFTI), Moscow, 1990), p. 100.Google Scholar
  26. 26.
    H. J. Kull, Phys. Rep. 206, 197 (1991).CrossRefADSGoogle Scholar
  27. 27.
    C. Cherfils and K. O. Mikaelian Phys. Fluids 8, 522 (1996).CrossRefADSGoogle Scholar
  28. 28.
    K. O. Mikaelian, Phys. Rev. E 53, 3551 (1996).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • N. A. Inogamov
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations