Molecular-dynamics simulation of evaporation of a liquid

  • V. V. Zhakhovskii
  • S. I. Anisimov


The molecular-dynamics method is used to investigate high-temperature evaporation of a simple liquid. The interaction of the atoms is described by a Lenard-Jones 6–12 potential. The simulation shows that fluctuations of the binding energy in the surface layer play an important role in evaporation, thanks to which a significant contribution to the evaporated flux comes from atoms whose kinetic energy is of the same order of magnitude as the mean thermal energy. Such a mechanism of evaporation differs substantially from the traditional one [Ya. I. Frenkel’, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946)] based on the assumption that only those particles evaporate that have energies of the order of the binding energy, i.e., much larger than the mean thermal energy. The structure of the transitional layer between the bulk gas and liquid phases is investigated. Potential energy fluctuations and pairwise correlation functions in the bulk phases and transitional layer are calculated. The velocity distribution function of the atoms for evaporation into vacuum is found.


Evaporation Binding Energy Correlation Function Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946).Google Scholar
  2. 2.
    O. Knake and I. N. Stranskii, Usp. Fiz. Nauk 68, 261(1959) [Sov. Phys. Usp. 2, (1959).Google Scholar
  3. 3.
    J. P. Hirth and G.M. Pound, Condensation and Evaporation: Nucleation and Growth Kinetics (Pergamon Press, Oxford, 1963).Google Scholar
  4. 4.
    S. I. Anisimov, Zh. Éksp. Teor. Fiz. 54, 338 (1968) [Sov. Phys. JETP 27, (1968)].Google Scholar
  5. 5.
    M. N. Kogan, Ann. Rev. Fluid Mech. 5, 383 (1973).CrossRefADSzbMATHGoogle Scholar
  6. 6.
    S. I. Anisimov and A. Kh. Rakhmatulina, Zh. Éksp. Teor. Fiz. 64, 869 (1973) [Sov. Phys. JETP 37, 441 (1973)].Google Scholar
  7. 7.
    V. I. Zhuk, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gazov, No. 2, 97 (1976).Google Scholar
  8. 8.
    T. Ytrehus, in Rarefied Gas Dynamics, edited by J. L. Potter (AIAA, New York, 1977).Google Scholar
  9. 9.
    C. Cercignani, in Rarefied Gas Dynamics, edited by P. Camparque (CEA, Paris, 1979), Vol. 1, p. 141.Google Scholar
  10. 10.
    C. Cercignani, in The Boltzmann Equation and its Applications (Springer-Verlag, New York, 1988).Google Scholar
  11. 11.
    S. I. Anisimov and V. V. Zhakhovskii, JETP Lett. 57, 99 (1993).ADSGoogle Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Fluid Dynamics, 2nd ed. (Pergamon Press, Oxford, 1987).Google Scholar
  13. 13.
    E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations V.1: Nonstiff Problems [Russian translation] (Springer, Berlin, 1987).Google Scholar
  14. 14.
    D. W. Heermann, Computer Simulation Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986).Google Scholar
  15. 15.
    L. Verlet, Phys. Rev. 159, 98 (1967).CrossRefADSGoogle Scholar
  16. 16.
    I. Z. Fisher, Statistical Theory of Liquids (University Press, Chicago, 1964).Google Scholar
  17. 17.
    A. N. Shiryaev, Probability [in Russian] (Nauka, Moscow, 1989).Google Scholar
  18. 18.
    J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 2nd & rev. ed. (Wiley, New York, 1986).Google Scholar
  19. 19.
    D. G. Triezenberg and R. Zwanzig, Phys. Rev. Lett. 28, 1183 (1972).CrossRefADSGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Pt. 1, 3rd. ed. (Pergamon Press, Oxford, 1980).Google Scholar
  21. 21.
    S. I. Anisimov (Ed.), Physical Kinetics and Transport Processes of Phase Transitions [in Russian] (Nauka i Tekhnika, Minsk, 1980).Google Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • V. V. Zhakhovskii
    • 1
  • S. I. Anisimov
    • 1
  1. 1.L.D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations