Advertisement

Mesoscopic wave turbulence

  • V. E. Zakharov
  • A. O. Korotkevich
  • A. N. Pushkarev
  • A. I. Dyachenko
Plasma, Gases

Abstract

We report results of simulation of wave turbulence. Both inverse and direct cascades are observed. The definition of “mesoscopic turbulence” is given. This is a regime when the number of modes in a system involved in turbulence is high enough to qualitatively simulate most of the processes but significantly smaller than the threshold, which gives us quantitative agreement with the statistical description, such as the kinetic equation. Such a regime takes place in numerical simulation, in essentially finite systems, etc.

PACS numbers

02.60.Cb 47.11.+j 47.27.Eq 47.35.+i 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Reznik, L. Piterbarg, and E. Kartashova, Dyn. Atmos. Oceans 18, 235 (1993).CrossRefGoogle Scholar
  2. 2.
    A. N. Pushkarev and V. E. Zakharov, Physica D (Amsterdam) 155, 98 (1999).ADSGoogle Scholar
  3. 3.
    A. N. Pushkarev, Eur. J. Mech. B/Fluids 18, 345 (1999).CrossRefzbMATHGoogle Scholar
  4. 4.
    C. Connaughton, S. Nazarenko, and A. Pushkarev, Phys. Rev. E 63, 046306 (2001).Google Scholar
  5. 5.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 2, 190 (1968).Google Scholar
  6. 6.
    A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 572 (2003) [JETP Lett. 77, 477 (2003)]; physics/0308100.Google Scholar
  7. 7.
    A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 649 (2003) [JETP Lett. 77, 546 (2003)]; physics/0308101.Google Scholar
  8. 8.
    A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, Phys. Rev. Lett. 92, 134501 (2004); physics/0308099.Google Scholar
  9. 9.
    M. Onorato, A. R. Osborne, M. Serio, et al., Phys. Rev. Lett. 89, 144501 (2002); nlin.CD/0201017.Google Scholar
  10. 10.
    P. M. Lushnikov and V. E. Zakharov, Physica D (Amsterdam) 203, 9 (2005); nlin.PS/0410054.ADSMathSciNetGoogle Scholar
  11. 11.
    V. E. Zakharov, PhD Thesis (Budker Inst. for Nuclear Physics, Novosibirsk, USSR, 1966).Google Scholar
  12. 12.
    V. E. Zakharov and M. M. Zaslavskii, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 18, 747 (1982).Google Scholar
  13. 13.
    V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 4, 506 (1967).Google Scholar
  14. 14.
    O. M. Phillips, J. Fluid Mech. 107, 465 (1981).ADSzbMATHGoogle Scholar
  15. 15.
    G. Faltings, Invent. Math. 73, 349 (1983); Invent. Math. 75, 381(E) (1984).ADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    L. J. Mordell, Proc. Cambridge Philos. Soc. 21, 179 (1922).zbMATHGoogle Scholar
  17. 17.
    M. Frigo and S. G. Johnson, in Proceedings of 23rd International Conference on Acoustics, Speech, and Signal Processing, ICASSP-1998 (1998), Vol. 3, p. 1381; http://fftw.org.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • V. E. Zakharov
    • 1
    • 2
    • 3
  • A. O. Korotkevich
    • 1
  • A. N. Pushkarev
    • 1
    • 3
  • A. I. Dyachenko
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of MathematicsUniversity of ArizonaTucsonUSA
  3. 3.Waves and Solitons LLCGilbertUSA

Personalised recommendations