Advertisement

Physics of Atomic Nuclei

, Volume 68, Issue 12, pp 2110–2116 | Cite as

Possibilities of revealing collective pion degrees of freedomin nuclei by means of quasielastic pion knockout by high-energy electrons

  • V. G. Neudatchin
  • L. L. Sviridova
  • N. P. Yudin
  • S. N. Yudin
Elementary Particles and Fields Theory
  • 24 Downloads

Abstract

The kinematics of quasielastic pion knockout by longitudinal virtual photons in the electroproduction process is presented. The possibility of directly investigating pion momentum distributions in specific channels owing to pole-amplitude dominance is considered. It is shown that, taking into account the final-state interaction of the knock-on pion and the nucleus involved, one can reveal the existence of a pion condensate in nuclei, since the momentum distribution of collective pions has a pronounced maximum at a momentum in excess of 0.3 GeV/c and since the excitation spectrum of the final recoil nucleus is concentrated in the low-energy region E* ≈ K2/(2AM N ) ≤ 1 MeV. The picture of pion knockout from meson clouds of individual nucleons is totally different. The analogous rho-mesonmomentum distributions for the process ρ + γT* → π are also presented.

Keywords

Elementary Particle Excitation Spectrum Momentum Distribution Virtual Photon Pronounced Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Migdal, Zh. Éksp. Teor. Fiz. 61, 2209 (1971) [Sov. Phys. JETP 34, 1184 (1971)]; Rev. Mod. Phys. 50, 107 (1978).Google Scholar
  2. 2.
    A. B. Migdal, D. N. Voskresensky, E. E. Saperstein, and M. A. Troitsky, Pionic Degrees of Freedom in Nuclear Matter (Nauka, Moscow, 1991) [in Russian].Google Scholar
  3. 3.
    Yu. B. Ivanov, J. Knoll, H. Van Hees, and D. N. Voskresensky, Yad. Fiz. 64, 711 (2001) [Phys. At. Nucl. 64, 652 (2001)].Google Scholar
  4. 4.
    R. Alzetta, G. Liberti, and G. Preparata, Nucl. Phys. A 585, 307c (1995); R. Alzetta, T. Bubba, R. Le Perra, et al., Nuovo Cimento A 112, 762 (1999); R. Alzetta, G. Liberti, and G. Preparata, Nuovo Cimento A 112, 1609 (1999).ADSGoogle Scholar
  5. 5.
    R. H. Dicke, Phys. Rev. 93, 99 (1954); A. V. Andreev, V. I. Emelianov, and Yu. A. Il’insky, Coherent Phenomena in Optics (Nauka, Moscow, 1988) [in Russian].CrossRefADSzbMATHGoogle Scholar
  6. 6.
    V. G. Neudatchin, N. P. Yudin, and L. L. Sviridova, Yad. Fiz. 60, 2020 (1997) [Phys. At. Nucl. 60, 1848 (1997)]; V. G. Neudatchin, L. L. Sviridova, and N. P. Yudin, Yad. Fiz. 64, 1680 (2001) [Phys. At. Nucl. 64, 1600 (2001)].Google Scholar
  7. 7.
    V. G. Neudatchin, I. T. Obukhovsky, L. L. Sviridova, and N. P. Yudin, Nucl. Phys. A 739, 124 (2004).ADSGoogle Scholar
  8. 8.
    H. Sakai, Nucl. Phys. A 690, 66c (2001).ADSGoogle Scholar
  9. 9.
    N. P. Yudin, L. L. Sviridova, and V. G. Neudatchin, Yad. Fiz. 61, 1689 (1998) [Phys. At. Nucl. 61, 1577 (1998)].Google Scholar
  10. 10.
    V. G. Neudatchin, A. A. Sakharuk, V. V. Kurovsky, and Yu. M. Tchuvilsky, Phys. Rev. C 50, 148 (1994); 51, 784 (1995).CrossRefADSGoogle Scholar
  11. 11.
    T. Ryckebusch, D. Debruyhe, P. Lava, et al., Nucl. Phys. A 728, 226 (2003).ADSGoogle Scholar
  12. 12.
    D. Derbruyhe, T. Ryckebusch, et al., Phys. Rev. C 62, 024611 (2000); A. De Pace, Phys. Rev. Lett. 75, 29 (1995).Google Scholar
  13. 13.
    A. Sibirtsev and W. Kassing, Phys. Rev. C 61, 057601 (2000).Google Scholar
  14. 14.
    M. Alqadi and W. R. Gibbs, Phys. Rev. C 66, 064604 (2002).Google Scholar
  15. 15.
    M. Mizogushi, K. Sumiyoshi, T. Kajino, and H. Toki, Prog. Theor. Phys. 81, 1217 (1989).ADSGoogle Scholar
  16. 16.
    C. M. Chen, D. J. Ernst, and M. B. Johnson, Phys. Rev. C 48, 841 (1993).ADSGoogle Scholar
  17. 17.
    C. J. Bebek, C. N. Brown, S. D. Holmes, et al., Phys. Rev. D 17, 1693 (1978); P. Brauel, T. Canzler, D. Cords, et al., Z. Phys. C 3, 101 (1979).CrossRefADSGoogle Scholar
  18. 18.
    M. Strikman, Nucl. Phys. A 633–634, 64c (2000); M. Vanderhaeghen, P. A. M. Guichon, and M. Guidal, Phys. Rev. D 60, 094017 (1999); Nucl. Phys. A 633–634, 324c (2000).Google Scholar
  19. 19.
    V. G. Neudatchin, L. L. Sviridova, and N. P. Yudin, Yad. Fiz. 65, 594 (2002) [Phys. At. Nucl. 65, 567 (2002)].Google Scholar
  20. 20.
    F. Bonutti, P. Camerini, E. Fragiacomo, et al., Phys. Rev. C 55, 2999 (1997); B. Slovinski, in Proceedings of the XIV International Seminar on High Energy Physics Problems, Dubna, Russia, 1998, Ed. by A. M. Baldin and V. V. Burov (JINR, Dubna, 2000), Vol. II, p. 194.CrossRefADSGoogle Scholar
  21. 21.
    S. Khallaf and A. Ebrahim, Phys. Rev. C 62, 024603 (2000); S. Jena and S. Swain, Phys. Rev. C 55, 3015 (1997); M. H. Cha and Y. J. Kim, Phys. Rev. C 54, 429 (1996).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • V. G. Neudatchin
    • 1
  • L. L. Sviridova
    • 1
  • N. P. Yudin
    • 1
  • S. N. Yudin
    • 1
  1. 1.Institute of Nuclear PhysicsMoscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations