Advertisement

Physics of the Solid State

, Volume 47, Issue 12, pp 2325–2332 | Cite as

Stochastic resonance in single-domain nanoparticles with cubic anisotropy

  • Yu. P. Kalmykov
  • Yu. L. Raikher
  • W. T. Coffey
  • S. V. Titov
Low-Dimensional Systems and Surface Physics

Abstract

The signal-to-noise ratio for magnetic stochastic resonance in a superparamagnetic particle with cubic anisotropy is shown to be strongly dependent on the Larmor precession damping α. This phenomenon is due to the coupling of the relaxation and precession modes and can be used for measuring α. The dependence of the signal-to-noise ratio on α is characteristic of particles with nonaxial anisotropy; so the effect is absent in uniaxial particles.

Keywords

Spectroscopy Anisotropy State Physics Stochastic Resonance Superparamagnetic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phys. D: Appl. Phys. 35(19), R157 (2002).CrossRefADSGoogle Scholar
  2. 2.
    W. F. Brown, Jr., IEEE Trans. Magn. 15(5), 1196 (1979).CrossRefGoogle Scholar
  3. 3.
    R. K. Adair, Proc. Natl. Acad. Sci. USA 100(21), 12099 (2003).Google Scholar
  4. 4.
    B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier, Phys. Rep. 392(6), 321 (2004).CrossRefADSGoogle Scholar
  5. 5.
    L. Gammaitoni, P. H:anggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70(1), 223 (1998).CrossRefADSGoogle Scholar
  6. 6.
    R. Fox, Phys. Rev. A: At. Mol., Opt. Phys. 39(8), 4148 (1989).ADSGoogle Scholar
  7. 7.
    A. N. Grigorenko, V. I. Konov, and P. I. Nikitin, Pis’ma Zh. Éksp. Teor. Fiz. 52(11), 1182 (1990) [JETP Lett. 52, 593 (1990)].Google Scholar
  8. 8.
    L. B. Kiss, Z. Gingl, Z. Márton, J. Kertész, F. Moss, G. Schmera, and A. Bulsara, J. Stat. Phys. 70(1–2), 451 (1993).Google Scholar
  9. 9.
    Yu. L. Raikher and V. I. Stepanov, J. Phys.: Condens. Matter 6(22), 4137 (1994).CrossRefADSGoogle Scholar
  10. 10.
    Yu. L. Raikher and V. I. Stepanov, Phys. Rev. B: Condens. Matter 52(5), 3493 (1995).ADSGoogle Scholar
  11. 11.
    Yu. L. Raikher, V. I. Stepanov, and P. C. Fannin, J. Magn. Magn. Mater. 258–259(1), 369 (2003).Google Scholar
  12. 12.
    Yu. L. Raikher, V. I. Stepanov, A. N. Grigorenko, and P. I. Nikitin, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 56(6), 6400 (1997).Google Scholar
  13. 13.
    Yu. L. Raikher and V. I. Stepanov, Phys. Rev. Lett. 86(10), 1923 (2001).CrossRefADSGoogle Scholar
  14. 14.
    S. Chikatzumi, Physics of Magnetism (Wiley, New York, 1964).Google Scholar
  15. 15.
    W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Yu. P. Kalmykov, E. C. Kennedy, and W. Wernsdorfer, Phys. Rev. Lett. 80(25), 5655 (1998).CrossRefADSGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, New York, 1980), Part 1.Google Scholar
  17. 17.
    M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. Stocks, Phys. Rev. Lett. 68(20), 2985 (1992).CrossRefADSGoogle Scholar
  18. 18.
    W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin Equation, 2nd ed. (World Sci., Singapore, 2004).Google Scholar
  19. 19.
    W. F. Brown, Jr., Phys. Rev. 130(5), 1677 (1963).CrossRefADSGoogle Scholar
  20. 20.
    Yu. P. Kalmykov, S. V. Titov, and W. T. Coffey, Phys. Rev. B: Condens. Matter 58(6), 3267 (1998).ADSGoogle Scholar
  21. 21.
    Yu. P. Kalmykov and S. V. Titov, Zh. Éksp. Teor. Fiz. 115(1), 101 (1999) [JETP 88, 58 (1999)].Google Scholar
  22. 22.
    Yu. P. Kalmykov and S. V. Titov, Phys. Rev. Lett. 82(14), 2967 (1999).CrossRefADSGoogle Scholar
  23. 23.
    P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62(2), 251 (1990).CrossRefADSGoogle Scholar
  24. 24.
    I. Klik and L. Gunther, J. Appl. Phys. 67(9), 4505 (1990).CrossRefADSGoogle Scholar
  25. 25.
    D. A. Smith and F. A. de Rozario, J. Magn. Magn. Mater. 3(3), 219 (1976).CrossRefADSGoogle Scholar
  26. 26.
    W. T. Coffey, D. A. Garanin, and D. J. McCarthy, Adv. Chem. Phys. 117, 528 (2001).Google Scholar
  27. 27.
    Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 47(2), 260 (2005) [Phys. Solid State 47 (2), 272 (2005)].Google Scholar
  28. 28.
    V. I. Melnikov and S. V. Meshkov, J. Chem. Phys. 85(2), 1018 (1986); V. I. Melnikov, Phys. Rep. 209 (1), 1 (1991).ADSGoogle Scholar
  29. 29.
    A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, FL, 1996).Google Scholar
  30. 30.
    Yu. L. Raikher and V. I. Stepanov, Phys. Rev. B: Condens. Matter 55(22), 15 005 (1997).Google Scholar
  31. 31.
    L. Spinu, D. Fiorani, H. Srikanth, F. Lucari, F. D’Orazio, E. Tronc, and M. Noguès, J. Magn. Magn. Mater. 226–230(2), 1927 (2001).Google Scholar
  32. 32.
    D. G. Rancourt, Rev. Mineral. Geochem. (Nanopart. Environ.) 44, 217 (2001).Google Scholar
  33. 33.
    L. Gunther, Phys. World 3(12), 28 (1990).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • Yu. P. Kalmykov
    • 1
  • Yu. L. Raikher
    • 2
  • W. T. Coffey
    • 3
  • S. V. Titov
    • 4
  1. 1.Lab. Mathématiques et Physique des SystémesUniversité de PerpignanPerpignan CedexFrance
  2. 2.Institute of Continuum Mechanics, Ural DivisionRussian Academy of SciencesPermRussia
  3. 3.Department of Electronic and Electrical EngineeringTrinity CollegeDublin 2Ireland
  4. 4.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazino, Moscow oblastRussia

Personalised recommendations