Local magnon modes and the dynamics of a small-radius two-dimensional magnetic soliton in an easy-axis ferromagnet

  • B. A. Ivanov
  • D. D. Sheka
Condensed Matter


The internal dynamics of a small-radius precession magnetic soliton is considered. A variational formulation of the problem on the soliton-magnon interaction is proposed and used to calculate the frequency of a truly local mode. It is shown that this mode, as well as the conventional translational mode, remains localized in the small soliton radius limit. The presence of the local mode is confirmed by the numerical solution of the scattering problem.

PACS numbers

05.45.−a 75.10.Hk 75.30.Ds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization: Dynamical and Topological Solitons (Naukova Dumka, Kiev, 1983) [in Russian]; Phys. Rep. 194, 117 (1990); V. G. Bar’yakhtar and B. A. Ivanov, Sov. Sci. Rev., Sect. A 16, 3 (1993).Google Scholar
  2. 2.
    A. A. Belavin and A. M. Polyakov, Pis’ma Zh. Éksp. Teor. Fiz. 22, 503 (1975) [JETP Lett. 22, 245 (1975)].Google Scholar
  3. 3.
    R. H. Hobard, Proc. Phys. Soc. 82, 201 (1963); G. H. Derrick, J. Math. Phys. 5, 1252 (1964).MathSciNetGoogle Scholar
  4. 4.
    B. A. Ivanov and A. M. Kosevich, Pis’ma Zh. Éksp. Teor. Fiz. 24, 495 (1976) [JETP Lett. 24, 454 (1976)].Google Scholar
  5. 5.
    A. S. Kovalev, A. M. Kosevich, and K. V. Maslov, Pis’ma Zh. Éksp. Teor. Fiz. 30, 321 (1979) [JETP Lett. 30, 296 (1979)].Google Scholar
  6. 6.
    D. D. Sheka, B. A. Ivanov, and F. G. Mertens, Phys. Rev. B 64, 024 432 (2001).Google Scholar
  7. 7.
    F. G. Mertens and A. R. Bishop, in Nonlinear Science at the Dawn of the 21st Century, Ed. by P. L. Christiansen, M. P. Soerensen, and A. C. Scott (Springer, Berlin, 2000).Google Scholar
  8. 8.
    N. Papanicolaou and T. N. Tomaras, Nucl. Phys. B 360, 425 (1991); N. Papanicolaou and W. J. Zakrzewski, Physica D (Amsterdam) 80, 225 (1995); B. Piette and W. J. Zakrzewski, Physica D (Amsterdam) 119, 314 (1998).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    K. Lonngren and A. Scott, Solitons in Action (Academic, New York, 1978).Google Scholar
  10. 10.
    B. A. Ivanov, H. J. Schnitzer, F. G. Mertens, and G. M. Wysin, Phys. Rev. B 58, 8464 (1998).ADSGoogle Scholar
  11. 11.
    D. D. Sheka, I. A. Yastremsky, B. A. Ivanov, et al., Phys. Rev. B 69, 054 429 (2004).Google Scholar
  12. 12.
    D. D. Sheka, C. Schuster, B. A. Ivanov, and F. G. Mertens, cond-mat/0505542 (2005).Google Scholar
  13. 13.
    F. K. Abdullaev, R. M. Galimzyanov, and A. S. Kirakosyan, Phys. Rev. B 60, 6552 (1999).CrossRefADSGoogle Scholar
  14. 14.
    D. Sheka, B. Ivanov, and F. G. Mertens, Phys. Rev. A 68, 012 707 (2003).Google Scholar
  15. 15.
    B. A. Ivanov, Pis’ma Zh. Éksp. Teor. Fiz. 61, 898 (1995) [JETP Lett. 61, 917 (1995)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • B. A. Ivanov
    • 1
  • D. D. Sheka
    • 2
  1. 1.Institute of MagnetismKievUkraine
  2. 2.Taras Shevchenko National UniversityKievUkraine

Personalised recommendations