Topological quantum mechanics for physicists

  • A. Losev
  • I. Polyubin
Scientific Summaries

Abstract

This text is an attempt to write an introduction and outline of main results of topological quantum mechanics for readers with a physical background. Instead of presenting rigorous mathematical formulations, we concentrate on explanation of the physical ideas that underline most of the constructions. We review here topological quantum mechanics, since it is the simplest in the diverse family of topological theories, which contains most of their common properties.

PACS numbers

03.65.Vf 11.90.+t 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten, Nucl. Phys. B 188, 513 (1981).CrossRefADSGoogle Scholar
  2. 2.
    E. Witten, Nucl. Phys. B 340, 281 (1990).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    E. Witten, Commun. Math. Phys. 121, 351 (1989).CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    E. Witten, Commun. Math. Phys. 117, 353 (1988).CrossRefADSMATHMathSciNetGoogle Scholar
  5. 5.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 223, 445 (1983).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    N. Berkovits, J. High Energy Phys. 0009, 046 (2000).Google Scholar
  7. 7.
    N. Berkovits, J. High Energy Phys. 0209, 051 (2002).Google Scholar
  8. 8.
    R. Dijkgraaf, S. Gukov, A. Neitzke, and C. Vafa, hep-th/0411073.Google Scholar
  9. 9.
    N. Nekrasov, hep-th/0412021.Google Scholar
  10. 10.
    I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B 102B, 27 (1981); Phys. Rev. D 28, 2567 (1983).ADSMathSciNetGoogle Scholar
  11. 11.
    E. Witten, Commun. Math. Phys. 118, 411 (1988).CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    V. Lysov, Pis’ma Zh. Éksp. Teor. Fiz. 76, 855 (2002) [JETP Lett. 76, 724 (2002)].Google Scholar
  13. 13.
    M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Commun. Math. Phys. 165, 311 (1994).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A. Losev and I. Polyubin, Pis’ma Zh. Éksp. Teor. Fiz. 77, 59 (2003) [JETP Lett. 77, 53 (2003)].Google Scholar
  15. 15.
    M. Movshev and A. Schwarz, Nucl. Phys. B 681, 324 (2004).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    A. Schwarz, Commun. Math. Phys. 158, 373 (1993).CrossRefADSGoogle Scholar
  17. 17.
    A. S. Losev and S. V. Shadrin, math.QA/0506039.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. Losev
    • 1
  • I. Polyubin
    • 1
    • 2
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations