Vacuum energy: Quantum hydrodynamics vs. quantum gravity

  • G. E. Volovik
Scientific Summaries


We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular, both have quadratic divergences, and both lead to the problem of the vacuum energy, which, in quantum gravity, transforms to the cosmological constant problem. We show that, in quantum liquids, the vacuum energy density is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is much smaller and is determined by the classical macroscopic parameters of the liquid, including the radius of the liquid droplet. In the same manner, the cosmological constant is not determined by the zero-point energy of quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe dynamics: the Hubble radius, the Newton constant, and the energy density of matter. The same may hold for the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is also cancelled by the microscopic (trans-Planckian) degrees of freedom due to the thermodynamic stability of the whole quantum vacuum.

PACS numbers

03.70.+k 04.90.+e 67.90.+z 98.80.Es 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau, Zh. Éksp. Teor. Fiz. 11, 592 (1941); J. Phys. (Moscow) 5, 71 (1941).Google Scholar
  2. 2.
    J. Stachel, in Black Holes, Gravitational Radiation and the Universe, Ed. by B. R. Iyer and B. Bhawal (Kluwer Academic, Dordrecht, 1999).Google Scholar
  3. 3.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    S. Pokorski, Phenomenological Guide to Physics Beyond the Standard Model, Lectures given at NATO Advanced Study Institute and EC Summer School on String Theory: From Gauge Interactions to Cosmology, Cargése, France, 2004; hep-ph/0502132.Google Scholar
  6. 6.
    M. Veltman, Facts and Mysteries in Elementary Particle Physics (World Sci., River Edge, NJ, 2003).Google Scholar
  7. 7.
    Y. Nambu, Physica D (Amsterdam) 15, 147 (1985).ADSGoogle Scholar
  8. 8.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990), Chap. 9.Google Scholar
  9. 9.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).Google Scholar
  10. 10.
    G. E. Volovik, Ann. Phys. (Leipzig) 14, 165 (2005); gr-qc/0405012.ADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    T. A. Knuuttila, J. T. Tuoriniemi, and K. Lefmann, Phys. Rev. Lett. 85, 2573 (2000).CrossRefADSGoogle Scholar
  12. 12.
    D. F. Litim, Phys. Rev. Lett. 92, 201 301 (2004).Google Scholar
  13. 13.
    F. R. Klinkhamer and G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 81, 683 (2005) [JETP Lett. 81, 551 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations