Optics and Spectroscopy

, Volume 99, Issue 5, pp 770–779

Optical electron transfer between quantum dots

  • A. M. Basharov
  • S. A. Dubovis
Solid-State Spectroscopy

Abstract

The continuous spectrum in the problem of resonance optical transitions between bound states of quantum wells is taken into account by the method of equivalence transformation of the initial Hamiltonian. The effective Hamiltonian of resonance interaction, describing the decay of levels to a continuous spectrum, is obtained. The formulas obtained are applied to the problem of resonance electron transfer between quantum dots. The conditions for effective resonance electron transfer are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer, Berlin, 1998).Google Scholar
  2. 2.
    L. A. Openov, Phys. Rev. B 60, 8798 (1999).CrossRefADSGoogle Scholar
  3. 3.
    A. V. Tsukanov and L. A. Openov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 94 (2004) [Semiconductors 38, 91 (2004)].Google Scholar
  4. 4.
    J. H. Oh, D. Ahn, and S. W. Hwang, Phys. Rev. A 62, 052306 (2000).Google Scholar
  5. 5.
    M. V. Fedorov, Atomic and Free Electrons in a Strong Light Field (World Scientific, Singapore, 1997).Google Scholar
  6. 6.
    V. F. Elesin, Fiz. Tverd. Tela (Leningrad) 12(4), 1133 (1970) [Sov. Phys. Solid State 12 (4), 885 (1970)].Google Scholar
  7. 7.
    M. Takatsuji, Phys. Rev. B 2(2), 340 (1970).CrossRefADSGoogle Scholar
  8. 8.
    M. Takatsuji, Physica (Amsterdam) 84(1), 68 (1976).ADSGoogle Scholar
  9. 9.
    A. M. Basharov, A. I. Maimistov, and É. A. Manykin, Zh. Éksp. Teor. Fiz. 84(2), 487 (1983) [Sov. Phys. JETP 57 (2), 282 (1983)].ADSGoogle Scholar
  10. 10.
    A. M. Basharov and A. I. Maimistov, Opt. Spektrosk. 88(3), 428 (2000) [Opt. Spectrosc. 88 (3), 380 (2000)].Google Scholar
  11. 11.
    W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Clarendon Press, Oxford, 1954; Inostrannaya Literatura, Moscow, 1956).Google Scholar
  12. 12.
    A. M. Basharov, Zh. Éksp. Teor. Fiz. 102(10), 1126 (1992) [Sov. Phys. JETP 75 (4), 611 (1992)].ADSGoogle Scholar
  13. 13.
    A. V. Klimov, J. L. Romero, J. Delgado, and L. L. Sanchez-Soto, J. Opt. B 5, 34 (2003).Google Scholar
  14. 14.
    A. V. Ivanova and G. G. Melikyan, J. Phys. B 21, 3017 (1988).CrossRefADSGoogle Scholar
  15. 15.
    A. M. Basharov, Photonics. Method of Unitary Transformation in Nonlinear Optics (Mosk. Inzh. Fiz. Inst., Moscow, 1990) [in Russian].Google Scholar
  16. 16.
    R. B. Gardner, The Method of Equivalence and Its Applications (Soc. Ind. Appl. Math., Philadelphia, 1989).Google Scholar
  17. 17.
    A. M. Basharov, Zh. Éksp. Teor. Fiz. 97(1), 169 (1990) [Sov. Phys. JETP 70 (1), 94 (1990)].MathSciNetGoogle Scholar
  18. 18.
    G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).Google Scholar
  19. 19.
    V. A. Kovarskii, E. V. Vitiu, and É. P. Sinyavskii, Fiz. Tverd. Tela (Leningrad) 12(3), 700 (1970) [Sov. Phys. Solid State 12 (3), 543 (1970)].Google Scholar
  20. 20.
    V. A. Kovarskii and E. Yu. Perlin, Phys. Status Solidi B 45(1), 47 (1971).Google Scholar
  21. 21.
    S. D. Ganichev, S. A. Emel’yanov, E. L. Ivchenko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 37(10), 479 (1983) [JETP Lett. 37 (10), 568 (1983)].Google Scholar
  22. 22.
    S. D. Ganichev, S. A. Emel’yanov, E. L. Ivchenko, et al., Zh. Éksp. Teor. Fiz. 91(4), 1233 (1986) [Sov. Phys. JETP 64 (4), 729 (1986)].Google Scholar
  23. 23.
    E. Yu. Perlin and A. V. Ivanov, Opt. Spektrosk. 87(1), 42 (1999) [Opt. Spectrosc. 87 (1), 36 (1999)].Google Scholar
  24. 24.
    A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).Google Scholar
  25. 25.
    A. M. Chebotarev, Lectures on Quantum Probability (Soc. Matematica Mexicana, 2000).Google Scholar
  26. 26.
    L. Accardi, Y. G. Lu, I. Volovich, et al., Quantum Theory and Its Stochastic Limit (Springer-Verlag, Berlin, 2002).Google Scholar
  27. 27.
    J. H. Van Vleck, Phys. Rev. 33, 467 (1929).ADSMATHGoogle Scholar
  28. 28.
    G. Wentzel, Quantum Theory of Fields (Intersciece, New York, 1949) [in Russian].Google Scholar
  29. 29.
    A. M. Basharov, Pis’ma Zh. Éksp. Teor. Fiz. 75, 151 (2002) [JETP Lett. 75, 123 (2002)]; Zh. Éksp. Teor. Fiz. 121, 1249 (2002) [JETP 94, 1070 (2002)].Google Scholar
  30. 30.
    M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, et al., Super-radiance: Multiatomic Coherent Emission (IOP, Philadelphia, 1996).Google Scholar
  31. 31.
    E. Yu. Perlin, Opt. Spektrosk. 88(3), 439 (2000) [Opt. Spectrosc. 88 (3), 390 (2000)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. M. Basharov
    • 1
  • S. A. Dubovis
    • 1
  1. 1.Russian Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations