Technical Physics

, Volume 50, Issue 11, pp 1408–1416 | Cite as

Stochastic theory of ultrathin lubricant film melting in the stick-slip regime

  • A. V. Khomenko
  • I. A. Lyashenko
Theoretical and Mathematical Physics Technical Physics


Melting of an ultrathin lubricant film under friction between atomically smooth surfaces is studied in terms of the Lorentz model. Additive noise associated with shear stresses and strains, as well as with film temperature, is introduced, and a phase diagram is constructed where the noise intensity of the film temperature and the temperature of rubbing surfaces define the domains of sliding, dry, and stick-slip friction. Conditions are found under which stick-slip friction proceeds in the intermittent regime, which is characteristic of selforganized criticality. The stress self-similar distribution, which is provided by temperature fluctuations, is represented with allowance for nonlinear relaxation of stresses and fractional feedbacks in the Lorentz system. Such a fractional scheme is used to construct a phase diagram separating out different types of friction. Based on the study of the fractional Fokker-Planck equation, the conclusion is drawn that stick-slip friction corresponds to the subdiffusion process.


Shear Stress Phase Diagram Additive Noise Noise Intensity Stochastic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998).Google Scholar
  2. 2.
    H. Yoshizawa, Y.-L. Chen, and J. Israelachvili, J. Phys. Chem. 97, 4128 (1993); H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97, 11300 (1993).Google Scholar
  3. 3.
    E. D. Smith, M. O. Robbins, and M. Cieplak, Phys. Rev. B 54, 8252 (1996).ADSGoogle Scholar
  4. 4.
    J. Krim, D. H. Solina, and R. Chiarello, Phys. Rev. Lett. 66, 181 (1991).CrossRefADSGoogle Scholar
  5. 5.
    J. M. Carlson and A. A. Batista, Phys. Rev. E 53, 4153 (1996).CrossRefADSGoogle Scholar
  6. 6.
    I. S. Aranson, L. S. Tsimring, and V. M. Vinokur, Phys. Rev. B 65, 125402 (2002).Google Scholar
  7. 7.
    P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830 (1990).CrossRefADSGoogle Scholar
  8. 8.
    F. Family, M. O. Braiman, and H. G. E. Hentschel, Friction, Arching, Contact Dynamics, Ed. by D. E. Wolf and P. Grassberger (World Sci., Singapore, 1996), pp. 33–41.Google Scholar
  9. 9.
    Y. Braiman, H. G. E. Hentschel, F. Family, et al., Phys. Rev. E 59, R4737 (1999).Google Scholar
  10. 10.
    O. M. Braun and Yu. S. Kivshar, Phys. Rev. B 43, 1060 (1991).CrossRefADSGoogle Scholar
  11. 11.
    J. B. Sokoloff, Phys. Rev. B 51, 15573 (1995).Google Scholar
  12. 12.
    T. Kawaguchi and H. Matsukawa, Phys. Rev. B 56, 4261 (1997).ADSGoogle Scholar
  13. 13.
    A. V. Khomenko and O. V. Yushchenko, Phys. Rev. E 68, 036110 (2003).Google Scholar
  14. 14.
    A. V. Khomenko, Phys. Lett. A 329, 140 (2004).CrossRefADSGoogle Scholar
  15. 15.
    P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer, New York, 1996).Google Scholar
  16. 16.
    A. I. Olemskoi, Physica A 310, 223 (2002).CrossRefADSMATHGoogle Scholar
  17. 17.
    C. Tsallis, in Lecture Notes in Physics, Ed. by S. Abe and Y. Okamoto (Springer, Heidelberg, 2001).Google Scholar
  18. 18.
    G. M. Zaslavsky, Phys. Rep. 371, 461 (2002).CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    Rheology: Theory and Applications, Ed. by F. R. Eirich (Academic, New York, 1956; Inostrannaya Literatura, Moscow, 1962).Google Scholar
  20. 20.
    H. Haken, Synergetics: An Introduction (Springer, Berlin, 1977; Mir, Moscow, 1980).Google Scholar
  21. 21.
    A. I. Olemskoi and A. V. Khomenko, Zh. Eksp. Teor. Fiz. 110, 2144 (1996) [JETP 83, 1180 (1996)].Google Scholar
  22. 22.
    H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed. (Springer, Berlin, 1989).Google Scholar
  23. 23.
    A. I. Olemskoi, Usp. Fiz. Nauk 168, 287 (1998) [Phys. Usp. 41, 269 (1998)].Google Scholar
  24. 24.
    D. J. Amit, Field Theory, the Renormalization Group and Critical Phenomena (McGraw Hill, New York, 1978).Google Scholar
  25. 25.
    R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    A._I. Olemskoi, A. V. Khomenko, and D. A. Olemskoi, Physica A 332, 185 (2004).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    A. I. Olemskoi and D. O. Kharchenko, Physica A 293, 178 (2001).CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    A. Vespignani and S. Zapperi, Phys. Rev. Lett. 78, 4793 (1997); Phys. Rev. E 57, 6345 (1998).CrossRefADSGoogle Scholar
  29. 29.
    A. I. Olemskoi and D. O. Kharchenko, J. Phys. Stud. 6, 253 (2002).MathSciNetGoogle Scholar
  30. 30.
    T. Hwa and M. Kardar, Phys. Rev. A 45, 7002 (1992).CrossRefADSGoogle Scholar
  31. 31.
    A. Mehta and G. C. Barker, Rep. Prog. Phys. 57, 383 (1994).CrossRefADSGoogle Scholar
  32. 32.
    A. I. Olemskoi and A. V. Khomenko, Phys. Rev. E 63, 036116 (2001).Google Scholar
  33. 33.
    A. Chessa, E. Marinari, A. Vespignani, et al., Phys. Rev. E 57, R6241 (1998).Google Scholar
  34. 34.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Nauka i Tekhnika, Minsk, 1987; Gordon and Breach, Amsterdam, 1993).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. V. Khomenko
    • 1
  • I. A. Lyashenko
    • 1
  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations