Quantum simulator for the O(3) nonlinear sigma model

  • R. Schützhold
  • S. Mostame
Fields, Particles, and Nuclei

Abstract

We propose a design for the construction of a laboratory system based on present-day technology which reproduces and thereby simulates the quantum dynamics of the O(3) nonlinear sigma model. Apart from its relevance in condensed-matter theory, this strongly interacting quantum field theory serves as an important toy model for quantum chromodynamics (QCD) since it reproduces many crucial properties of QCD. The proposed design is therefore a feasibility and proof-of-principle study for more general analogue quantum simulators.

PACS numbers

03.67.−a 11.10.Kk 68.65.−k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982); S. Lloyd, Science 273, 1073 (1996); S. Somaroo et al., Phys. Rev. Lett. 82, 5381 (1999).MathSciNetGoogle Scholar
  2. 2.
    D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004); J. J. Garcia-Ripoll, M. A. Martin-Delgado, and J. I. Cirac, Phys. Rev. Lett. 93, 250405 (2004).Google Scholar
  3. 3.
    M. V. Feigel’man et al., Phys. Rev. B 70, 224524 (2004).Google Scholar
  4. 4.
    M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).MathSciNetGoogle Scholar
  5. 5.
    A. M. Polyakov, Phys. Lett. B 59, 79 (1975).ADSMathSciNetGoogle Scholar
  6. 6.
    A. M. Polyakov and A. A. Belavin, Pis’ma Zh. Éksp. Teor. Fiz. 22, 503 (1975) [JETP Lett. 22, 245 (1975)]; A. A. Belavin et al., Phys. Lett. B 59, 85 (1975); V. A. Fateev, I. V. Frolov, and A. S. Schwarz, Nucl. Phys. B 154, 1 (1979).Google Scholar
  7. 7.
    V. A. Novikov et al., Phys. Rep. 116, 103 (1984); Fiz. Élem. Chastits At. Yadra 17, 472 (1986) [Sov. J. Part. Nucl. 17, 204 (1986)].CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Luscher, Nucl. Phys. B 135, 1 (1978); M. Luscher and K. Pohlmeyer, Nucl. Phys. B 137, 46 (1978); Alexander B. Zamolodchikov and Alexey B. Zamolodchikov, Ann. Phys. 120, 253 (1979); A. M. Polyakov and P. B. Wiegmann, Phys. Lett. B 131, 121 (1983); P. B. Wiegmann, Phys. Lett. B 152, 209 (1985); P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys. Lett. B 245, 522 (1990).ADSGoogle Scholar
  9. 9.
    G. Martinelli, G. Parisi, and R. Petronzio, Phys. Lett. B 100B, 485 (1981); K. Symanzik, Nucl. Phys. B 226, 205 (1983); Y. Iwasaki, Nucl. Phys. B 258, 141 (1985); U. Wolff, Nucl. Phys. B 334, 581 (1990).ADSGoogle Scholar
  10. 10.
    E. Brezin, J. Zinn-Justin, and J. C. Le Guillou, Phys. Rev. D 14, 2615 (1976); E. Brezin and J. Zinn-Justin, Phys. Rev. Lett. 36, 691 (1976); W. A. Bardeen, B. W. Lee, and R. E. Shrock, Phys. Rev. D 14, 985 (1976); S. Hikami and E. Brezin, J. Phys. A 11, 1141 (1978).ADSGoogle Scholar
  11. 11.
    A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995); P. Chaikin and T. C. Lubenski, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995); J. Zinn-Justin, Int. Ser. Monogr. Phys. 113, 1 (2002).Google Scholar
  12. 12.
    E. Farhi et al., Science 292, 472 (2001); A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A 65, 012322 (2002).ADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • R. Schützhold
    • 1
  • S. Mostame
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität DresdenDresdenGermany

Personalised recommendations