Josephson vortex lattice melting in Bi-2212 probed by commensurate oscillations of Josephson flux-flow

  • Yu. I. Latyshev
  • V. N. Pavlenko
  • A. P. Orlov
  • X. Hu
Condensed Matter


We studied the commensurate semifluxon oscillations of Josephson flux-flow in Bi-2212 stacked structures near Tc as a probe of melting of a Josephson vortex lattice. We found that oscillations exist above 0.5 T. The amplitude of the oscillations is found to decrease gradually with the temperature and to turn to zero without any jump at T = T0 (3.5 K below the resistive transition temperature Tc), thus, indicating a phase transition of the second order. This characteristic temperature T0 is identified as the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature, TBKT, in the elementary superconducting layers of Bi-2212 at zero magnetic field. On the basis of these facts, we infer that melting of a triangular Josephson vortex lattice occurs via the BKT phase with formation of characteristic flux loops containing pancake vortices and antivortices. The B-T phase diagram of the BKT phase found from our experiment is consistent with theoretical predictions.

PACS numbers

74.25.Qt 74.25.Dw 74.50.+r 74.72.Hs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Clem and M. Coffey, Phys. Rev. B 42, 6209 (1990).CrossRefADSGoogle Scholar
  2. 2.
    L. N. Bulaevskii and J. Clem, Phys. Rev. B 44, 10234 (1991).Google Scholar
  3. 3.
    S. Ooi, T. Mochiku, and K. Hirata, Phys. Rev. Lett. 89, 247002 (2002).Google Scholar
  4. 4.
    Yu. I. Latyshev, A. E. Koshelev, M. Gaifullin, et al., in Proceedings of 4th International Symposium on Intrinsic Josephson Effect and Plasma Oscillations in High-T e Superconductors (Tsukuba, Ibaraki, Japan, 2004), p. II-85-87.Google Scholar
  5. 5.
    S. E. Korshunov and A. I. Larkin, Phys. Rev. B 46, 6395 (1992).ADSGoogle Scholar
  6. 6.
    G. Blatter, B. I. Ivlev, and J. Rhyner, Phys. Rev. Lett. 66, 2392 (1991).ADSGoogle Scholar
  7. 7.
    X. Hu and M. Tachiki, Phys. Rev. B 70, 064 506 (2004).Google Scholar
  8. 8.
    X. Hu and M. Tachiki, Phys. Rev. Lett. 85, 2577 (2000).ADSGoogle Scholar
  9. 9.
    B. Horovitz, Phys. Rev. B 47, 5947 (1993); Phys. Rev. B 47, 5964 (1993).ADSGoogle Scholar
  10. 10.
    Yu. I. Latyshev, S.-J. Kim, and T. Yamashita, IEEE Trans. Appl. Supercond. 9, 4312 (1999).CrossRefGoogle Scholar
  11. 11.
    S. N. Artemenko, I. G. Gorlova, and Yu. I. Latyshev, Phys. Lett. A 138, 428 (1989); S. N. Artemenko and Yu. I. Latyshev, Mod. Phys. Lett. B 6, 367 (1992).CrossRefADSGoogle Scholar
  12. 12.
    S. N. Artemenko, I. G. Gorlova, and Yu. I. Latyshev, Pis’ma Zh. Éksp. Teor. Fiz. 49, 566 (1989) [JETP Lett. 49, 654 (1989)].ADSGoogle Scholar
  13. 13.
    Y. Iye, S. Nakamura, and S. Tamegai, Physica C (Amsterdam) 169, 433 (1989).Google Scholar
  14. 14.
    Yu. I. Latyshev, A. E. Koshelev, and L. N. Bulaevskii, Phys. Rev. B 68, 134504 (2003).Google Scholar
  15. 15.
    Yu. I. Latyshev, A. E. Koshelev, V. N. Pavlenko, et al., Physica C (Amsterdam) 367, 365 (2002).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • Yu. I. Latyshev
    • 1
  • V. N. Pavlenko
    • 1
  • A. P. Orlov
    • 1
  • X. Hu
    • 2
  1. 1.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.National Institute for Materials ScienceIbarakiJapan

Personalised recommendations