Advertisement

Phase transition with suppression of magnetism in BiFeO3 at high pressure

  • A. G. Gavriliuk
  • V. V. Struzhkin
  • I. S. Lyubutin
  • M. Y. Hu
  • H. K. Mao
Condensed Matter

Abstract

The magnetic behavior of a Bi57FeO3 powdered sample was studied at high pressures by the method of nuclear forward scattering (NFS) of synchrotron radiation. The NFS spectra from 57Fe nuclei were recorded at room temperature under high pressures up to 61.4 GPa, which were created in a diamond anvil cell. In the pressure interval 0 < P < 47 GPa, the magnetic hyperfine field HFe at the 57Fe nuclei increased reaching a value of ∼52.5 T at 30 GPa, and then it slightly decreased to ∼49.6 T at P = 47 GPa. As the pressure was increased further, the field HFe abruptly dropped to zero testifying a transition from the antiferromagnetic to a nonmagnetic state (magnetic collapse). In the pressure interval 47 < P < 61.4 GPa, the value of HFe remained zero. The field HFe recovered to the low-pressure values during decompression.

PACS numbers

71.27.+a 71.30.+h 81.40.Vw 81.40.Tv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 47(4), 8 (2004).CrossRefGoogle Scholar
  2. 2.
    G. A. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982).Google Scholar
  3. 3.
    G. A. Smolenskii, V. Yudin, E. Sher, et al., Sov. Phys. JETP 16, 622 (1963).Google Scholar
  4. 4.
    Yu. N. Venevtsev, G. Zhdanov, and S. Solov’ev, Sov. Phys. Crystallogr. 4, 538 (1960).Google Scholar
  5. 5.
    P. Fischer, M. Polomskya, I. Sosnowska, et al., J. Phys. C 13, 1931 (1980).CrossRefADSGoogle Scholar
  6. 6.
    J. D. Bucci, B. K. Robertson, and W. J. James, J. Appl. Crystallogr. 5, 187 (1972).CrossRefGoogle Scholar
  7. 7.
    S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1963).Google Scholar
  8. 8.
    I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).CrossRefADSGoogle Scholar
  9. 9.
    I. Sosnowska, M. Loewenhaupt, W. I. F. David, et al., Physica B (Amsterdam) 180–181, 117 (1992).Google Scholar
  10. 10.
    A. V. Zalesskii, JETP 95, 101 (2002).CrossRefGoogle Scholar
  11. 11.
    J. Wang, J. Neaton, and H. Zheng, Science 299, 1719 (2003).ADSGoogle Scholar
  12. 12.
    Yu. F. Popov, Ferroelectrics 162, 135 (1994).Google Scholar
  13. 13.
    Yu. F. Popov, A. M. Kadomtseva, S. Krotov, et al., Low Temp. Phys. 27, 478 (2001).CrossRefADSGoogle Scholar
  14. 14.
    B. Ruette, Phys. Rev. B 69, 064114 (2004).Google Scholar
  15. 15.
    A. M. Kadomtseva, Physica B (Amsterdam) 211, 327 (1995).ADSGoogle Scholar
  16. 16.
    R. Ruffer and A. I. Chumakov, Hyperfine Interact. 97–98, 589 (1996).Google Scholar
  17. 17.
    Yu. V. Shvyd’ko, M. Lerche, J. Jäschke, et al., Phys. Rev. Lett. 85, 495 (2000).ADSGoogle Scholar
  18. 18.
    G. V. Smirnov, Hyperfine Interact. 123–124, 31 (1999).Google Scholar
  19. 19.
    C. Blaauw and F. van der Woude, J. Phys. C 6, 1422 (1973).ADSGoogle Scholar
  20. 20.
    J. De Sitter et al., Solid State Commun. 18, 645 (1976).Google Scholar
  21. 21.
    A. V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, JETP Lett. 71, 465 (2000).CrossRefADSGoogle Scholar
  22. 22.
    Yu. V. Shvyd’ko, Phys. Rev. B 59, 9132 (1999).ADSGoogle Scholar
  23. 23.
    Yu. V. Shvyd’ko, Hyperfine Interact. 125, 173 (2000).Google Scholar
  24. 24.
    A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, et al., JETP 100, 688 (2005).CrossRefGoogle Scholar
  25. 25.
    A. G. Gavriliuk, I. A. Trojan, S. G. Ovchinnikov, et al., JETP 99, 566 (2004).CrossRefGoogle Scholar
  26. 26.
    A. G. Gavriliuk, S. A. Kharlamova, I. S. Lyubutin, et al., JETP Lett. 80, 426 (2004).CrossRefGoogle Scholar
  27. 27.
    A. G. Gavriliuk, I. A. Troyan, R. Boehler, et al., JETP Lett. 77, 619 (2003).CrossRefADSGoogle Scholar
  28. 28.
    V. A. Sarkisyan, I. A. Troyan, I. S. Lyubutin, et al., JETP Lett. 76, 664 (2002).CrossRefADSGoogle Scholar
  29. 29.
    J. Badro, G. Fiquet, V. V. Struzhkin, et al., Phys. Rev. Lett. 89, 205 504 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. G. Gavriliuk
    • 1
    • 2
    • 3
  • V. V. Struzhkin
    • 1
  • I. S. Lyubutin
    • 2
  • M. Y. Hu
    • 4
  • H. K. Mao
    • 1
  1. 1.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA
  2. 2.Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia
  4. 4.HPCAT, Carnegie Institution of Washington, Advanced Photon Source, ANLArgonneUSA

Personalised recommendations