Type-IV superconductivity: Cooper pairs with broken inversion and time-reversal symmetries in conventional superconductors

  • A. G. Lebed
Condensed Matter


The vortex phase in a singlet superconductor in the absence of impurities is shown to be absolutely unstable with respect to the appearance of a triplet component that breaks both the inversion and time-reversal symmetries of Cooper pairs. The symmetry breaking paramagnetic effects are demonstrated to be of the order of unity if the orbital upper critical field, Hc2(0), is of the order of the Clogston paramagnetic limiting field, Hp. We suggest a generic phase diagram of such a type-IV superconductor that is a singlet one at H = 0 and characterized by a mixed singlet-triplet order parameter with broken time-reversal symmetry in the vortex phase. The possibility to observe type-IV superconductivity in clean organic, high-Tc, MgB2, and other superconductors is discussed.

PACS numbers

74.20.Rp 74.25.Op 74.70.−b 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; Elsevier, Amsterdam, 1988).Google Scholar
  2. 2.
    P. G. de Gennes, Superconductivity of Metals and Alloys (Westview Press, Boulder, 1999; Mir, Moscow, 1968).Google Scholar
  3. 3.
    L. P. Gorkov and T. K. Melik-Barkhudarov, Zh. Éksp. Teor. Fiz. 45, 1493 (1963) [Sov. Phys. JETP 18, 1031 (1964)].Google Scholar
  4. 4.
    D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, J. Phys. Lett. 41, L–95 (1980).Google Scholar
  5. 5.
    T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer, Heidelberg, 1998).Google Scholar
  6. 6.
    F. Steglich, J. Aarts, C. D. Bredl, et al., Phys. Rev. Lett. 43, 1892 (1979).CrossRefADSGoogle Scholar
  7. 7.
    J. G. Bednortz and K. Muller, Z. Phys. B 64, 189 (1986).Google Scholar
  8. 8.
    Y. Maeno, H. Hashimoto, K. Yoshida, et al., Nature 372, 532 (1994).CrossRefADSGoogle Scholar
  9. 9.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Nature 410, 63 (2001).CrossRefADSGoogle Scholar
  10. 10.
    M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).CrossRefADSGoogle Scholar
  11. 11.
    V. P. Mineev and K. V. Samokhin, Introduction to Unconventional Superconductivity (Gordon and Breach, Amsterdam, 1999).Google Scholar
  12. 12.
    We do not use term “type-III superconductivity” in order to distinguish between suggested in the letter novel bulk phenomenon and a so-called surface superconductivity, which is characterized by critical field H c3(T) [1 2].Google Scholar
  13. 13.
    A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962); B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).ADSGoogle Scholar
  14. 14.
    Type-IV superconductivity phenomenon in layered d-wave superconductors is considered in A.G. Lebed, Phys. Rev. Lett. (submitted).Google Scholar
  15. 15.
    L. P. Gorkov, Zh. Éksp. Teor. Fiz. 34, 735 (1958) [Sov. Phys. JETP 7, 505 (1958)].zbMATHGoogle Scholar
  16. 16.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, Englewood Cliffs, N.J., 1963).Google Scholar
  17. 17.
    L. P. Gorkov, Zh. Éksp. Teor. Fiz. 37, 833 (1959) [Sov. Phys. JETP 10, 593 (1960)].MathSciNetGoogle Scholar
  18. 18.
    L. P. Gorkov, Zh. Éksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys. JETP 9, 1364 (1959)].zbMATHGoogle Scholar
  19. 19.
    A. A. Abrikosov, Zh. Éksp. Teor. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5, 1174 (1957)].Google Scholar
  20. 20.
    M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).CrossRefADSGoogle Scholar
  21. 21.
    S. Matsuo, H. Shimahara, and K. Nagai, J. Phys. Soc. Jpn. 63, 2499 (1994).CrossRefGoogle Scholar
  22. 22.
    H. Shimahara, Phys. Rev. B 62, 3524 (2000).ADSGoogle Scholar
  23. 23.
    L. P. Gorkov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. G. Lebed
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations