Inflaton field potential producing an exactly flat spectrum of adiabatic perturbations

  • A. A. Starobinsky
Gravity, Astrophysics

Abstract

Presented in this letter is the exact solution of the problem of finding the potential of an inflaton scalar field for which adiabatic perturbations generated during a de Sitter (inflationary) stage in the early Universe have an exactly flat (or, the Harrison-Zeldovich) initial spectrum. This solution lies outside the scope of the slow-roll approximation and higher-order corrections to it. The potential found depends on two arbitrary physical constants, one of which determines the amplitude of the perturbations. For small (zero) values of the other constant, a long (infinite) inflationary stage with slow rolling of the inflaton field exists.

PACS numbers

98.80.−k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. F. Mukhanov and G. V. Chibisov, Pis’ma Zh. Éksp. Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].Google Scholar
  2. 2.
    A. A. Starobinsky, Phys. Lett. B 91B, 99 (1980).ADSGoogle Scholar
  3. 3.
    S. W. Hawking, Phys. Lett. B 115B, 295 (1982).ADSGoogle Scholar
  4. 4.
    A. A. Starobinsky, Phys. Lett. B 117B, 175 (1982).ADSGoogle Scholar
  5. 5.
    A. H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).CrossRefADSGoogle Scholar
  6. 6.
    A. D. Linde, Phys. Lett. B 108B, 389 (1982).ADSMathSciNetGoogle Scholar
  7. 7.
    A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).ADSGoogle Scholar
  8. 8.
    E. D. Stewart and D. H. Lyth, Phys. Lett. B 302, 171 (1993).ADSGoogle Scholar
  9. 9.
    E. D. Stewart and J.-O. Gong, Phys. Lett. B 510, 1 (2001).ADSGoogle Scholar
  10. 10.
    J. Choe, J.-O. Gong, and E. D. Stewart, J. Cosmol. Astropart. Phys. 0407, 012 (2004).Google Scholar
  11. 11.
    S. Dodelson and E. D. Stewart, Phys. Rev. D 65, 101301 (2002); E. D. Stewart, Phys. Rev. D 65, 103 508 (2002).Google Scholar
  12. 12.
    M. Joy, E. D. Stewart, J.-O. Gong, and H.-C. Lee, J. Cosmol. Astropart. Phys. 0504, 012 (2005).Google Scholar
  13. 13.
    A. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 30, 719 (1979) [JETP Lett. 30, 682 (1979)].Google Scholar
  14. 14.
    J. Martin and D. Schwarz, Phys. Rev. D 62, 103520 (2000); D. J. Schwarz and C. A. Terrero-Escalante, J. Cosmol. Astropart. Phys. 0408, 003 (2004).Google Scholar
  15. 15.
    S. Habib, A. Heinen, K. Heitmann, et al., Phys. Rev. D 70, 083 507 (2004); Phys. Rev. D 71, 043 518 (2005).Google Scholar
  16. 16.
    R. Casadio, F. Finelli, M. Luzzi, and G. Venturi, Phys. Rev. D 71, 043 517 (2005); gr-qc/0506043 (2005).Google Scholar
  17. 17.
    V. F. Mukhanov, Pis’ma Zh. Éksp. Teor. Fiz. 41, 402 (1985) [JETP Lett. 41, 493 (1985)].Google Scholar
  18. 18.
    A. G. Muslimov, Class. Quantum Grav. 7, 231 (1990); D. S. Salopek and J. R. Bond, Phys. Rev. D 42, 3936 (1990).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    F. Lucchin and S. Matarrese, Phys. Rev. D 32, 1316 (1985).CrossRefADSGoogle Scholar
  20. 20.
    R. Easther, Class. Quantum Grav. 13, 1775 (1996).CrossRefADSMATHGoogle Scholar
  21. 21.
    D. Polarski and A. A. Starobinsky, Class. Quantum Grav. 13, 377 (1996).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    E. R. Harrison, Phys. Rev. D 1, 2726 (1970); Ya. B. Zeldovich, Mon. Not. R. Astron. Soc. 160, 1P (1972).ADSGoogle Scholar
  23. 23.
    A. Benoit, P. Ade, A. Amblard, et al., Astron. Astrophys. 399, L25 (2003).ADSGoogle Scholar
  24. 24.
    C. L. Bennett, M. Halpern, G. Hinshaw, et al., Astrophys. J., Suppl. 148, 1 (2003).ADSGoogle Scholar
  25. 25.
    J. D. Barrow and A. R. Liddle, Phys. Rev. D 47, 5219 (1993).ADSGoogle Scholar
  26. 26.
    A. D. Rendall, Class. Quantum Grav. 22, 1655 (2005).CrossRefADSMATHMathSciNetGoogle Scholar
  27. 27.
    A. Vallinotto, E. J. Copeland, E. W. Kolb, et al., Phys. Rev. D 69, 103 519 (2004).Google Scholar
  28. 28.
    A. A. Starobinsky, Pis’ma Astron. Zh. 9, 579 (1983) [Sov. Astron. Lett. 9, 302 (1983)].ADSGoogle Scholar
  29. 29.
    U. Seljak, A. Makarov, P. McDonald, et al., Phys. Rev. D 71, 103 515 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. A. Starobinsky
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations