Optics and Spectroscopy

, Volume 99, Issue 4, pp 668–676

Laser ablation of silver in different liquids: Optical and nonlinear optical properties of silver nanoparticles

  • R. A. Ganeev
  • M. Baba
  • A. I. Ryasnyanskii
  • M. Suzuki
  • H. Kuroda
Lasers and Their Applications

Abstract

The optical, structural, and nonlinear optical properties of silver nanoparticles prepared using the method of laser ablation in various liquids at wavelengths of 397, 532, and 795 nm with laser pulses of different duration are studied. An analysis of the dimensional and spectral characteristics of the silver nanoparticles revealed a time dynamics of the nanoparticle size distribution in solutions. It is shown that thermal self-defocusing is observed for the case of nanosecond or shorter pulses generated with a high repetition rate. For picosecond and femtosecond pulses with a low repetition rate, the effects of self-focusing (γ = 3 × 10−13 cm2 W−1) and saturated absorption (β = −1.5 × 10−9 cm W−1) were observed in the solutions under study. The third-order nonlinear susceptibility of the silver nanoparticles was found to be 5 × 10−8 esu at a wavelength of 397 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Brause, H. Moltgen, and K. Kleinermanns, Appl. Phys. B 75, 711 (2002).CrossRefADSGoogle Scholar
  2. 2.
    R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, et al., Phys. D: Appl. Phys. 34, 1602 (2001).ADSGoogle Scholar
  3. 3.
    H. Inouye, K. Tanaka, and J. Tanahashi, Jpn. J. Appl. Phys. 39, 5132 (2000).CrossRefGoogle Scholar
  4. 4.
    J. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic Press, New York, 1984; Mir, Moscow, 1987).Google Scholar
  5. 5.
    M. Sheik-Bahae, A. A. Said, T.-H. Wei, et al., IEEE J. Quantum Electron. 26, 760 (1990).CrossRefGoogle Scholar
  6. 6.
    R. A. Ganeev, M. Baba, A. I. Ryasnyansky, et al., Opt. Commun. 231, 431 (2004).CrossRefADSGoogle Scholar
  7. 7.
    T. Tsuji, K. Iryo, N. Watanabe, and M. Tsuji, Appl. Surf. Sci. 202, 80 (2002).CrossRefGoogle Scholar
  8. 8.
    T. Tsuji, N. Watanabe, and M. Tsuji, Appl. Surf. Sci. 211, 189 (2003).CrossRefGoogle Scholar
  9. 9.
    V. V. Slabko, S. V. Karpov, V. I. Zaitsev, and A. K. Popov, J. Phys. 5, 7231 (1993).Google Scholar
  10. 10.
    R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, Fiz. Tverd. Tela (St. Petersburg) 45, 1292 (2003) [Phys. Solid State 45, 1355 (2003)].Google Scholar
  11. 11.
    M. Kyoung and M. Lee, Opt. Commun. 171, 145 (1999).CrossRefADSGoogle Scholar
  12. 12.
    K. Uchida, S. Kaneka, S. Omi, et al., J. Opt. Soc. Am. B 11, 1236 (1994).ADSGoogle Scholar
  13. 13.
    L. Yang, K. Becker, F. M. Smith, et al., J. Opt. Soc. Am. B 11, 457 (1994).ADSGoogle Scholar
  14. 14.
    M. Falkonieri and G. Salvetti, Appl. Phys. B 69, 133 (1999).ADSGoogle Scholar
  15. 15.
    S. Couris, M. Renard, O. Faucher, et al., Chem. Phys. Lett. 369, 318 (2003).CrossRefGoogle Scholar
  16. 16.
    A. Markano, H. Maillotte, D. Gindre, and D. Metin, Opt. Lett. 21, 101 (1996).ADSGoogle Scholar
  17. 17.
    R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, Phys. Status Solidi B 241, 935 (2004).ADSGoogle Scholar
  18. 18.
    H. Toda and C. M. Verber, Opt. Lett. 17, 1379 (1992).ADSGoogle Scholar
  19. 19.
    R. A. Ganeev, M. Baba, A. I. Ryasnyansky, et al., Appl. Phys. B 78, 433 (2004).ADSGoogle Scholar
  20. 20.
    H. Kurata, A. Takamhi, and S. Koda, Appl. Phys. Lett. 72, 789 (1998).ADSGoogle Scholar
  21. 21.
    S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. Sayed, J. Phys. Chem. 103, 1165 (1999).Google Scholar
  22. 22.
    F. Mafune, J. Kohono, Y. Takeda, and T. Kondow, J. Phys. Chem. B 106, 8555 (2002).Google Scholar
  23. 23.
    N. Chandrasekharan, P. V. Kamat, J. Hu, and G. Jones II, J. Phys. Chem. B 104, 11103 (2000).Google Scholar
  24. 24.
    M. J. Bloemer, J. W. Haus, and P. R. Ashley, J. Opt. Soc. Am. B 7, 790 (1990).ADSGoogle Scholar
  25. 25.
    Y. Hamanaka, H. Hayashi, A. Nakamura, and S. Omi, J. Lumin. 87–89, 859 (2000).Google Scholar
  26. 26.
    Y. Hamanaka, A. Nakamura, H. Hayashi, and S. Omi, J. Opt. Soc. Am. B 20, 1227 (2003).ADSGoogle Scholar
  27. 27.
    L. C. Hwang, S. C. Lee, and T. C. Wen, Opt. Commun. 228, 373 (2003).CrossRefADSGoogle Scholar
  28. 28.
    R. A. Ganeev, R. I. Tugushev, A. A. Ishchenko, et al., Appl. Phys. B 76, 683 (2003).ADSGoogle Scholar
  29. 29.
    L. Yang, R. Dorsinville, Q. Z. Wang, and R. R. Alfano, Opt. Lett. 17, 323 (1992).ADSGoogle Scholar
  30. 30.
    S. S. Sarkisov, E. Williams, M. Curley, et al., Nucl. Inst. Meth. B 141, 294 (1998).ADSGoogle Scholar
  31. 31.
    R. H. Magruder III, D. H. Osborne, Jr., and R. A. Zuhr, J. Non-Cryst. Solids 176, 299 (1994).CrossRefGoogle Scholar
  32. 32.
    M. Falconieri, G. Salvetti, E. Gattaruzza, et al., Appl. Phys. Lett. 73, 288 (1998).CrossRefADSGoogle Scholar
  33. 33.
    E. Cattaruzza, G. Battaglin, P. Calvelli, et al., Comp. Sci. Techn. 63, 1203 (2003).CrossRefGoogle Scholar
  34. 34.
    D. H. Osborne, Jr., R. F. Haglund, Jr., F. Gonella, and F. Garrido, Appl. Phys. B 66, 517 (1998).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • R. A. Ganeev
    • 1
    • 2
  • M. Baba
    • 1
  • A. I. Ryasnyanskii
    • 3
  • M. Suzuki
    • 1
  • H. Kuroda
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoKashiwa, ChibaJapan
  2. 2.NPO AkadempriborAkademgorodok, TashkentUzbekistan
  3. 3.Institut des Nano-Sciences de ParisCNRS-Université Pierre et Marie CurieParisFrance

Personalised recommendations