Optics and Spectroscopy

, Volume 99, Issue 4, pp 517–521

Propagation of a few-cycle laser pulse in a V-type three-level system

  • X. Song
  • S. Gong
  • Z. Xu
Coherent Effects for Electron and Photon Waves
  • 51 Downloads

Abstract

Propagation of a few-cycle laser pulse in a V-type three-level system (fine structure levels of rubidium) is investigated numerically. The full three-level Maxwell-Bloch equations without the rotating wave approximation and the standing slowly varying envelope approximation are solved by using a finite-difference time-domain method. It is shown that, when the usual unequal oscillator strengths are considered, self-induced transparency cannot be recovered and higher spectral components can be produced even for small-area pulses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. E. Harris, Phys. Rev. Lett. 72, 52 (1994).CrossRefADSGoogle Scholar
  2. 2.
    W. E. Lamb, Jr., Phys. Rev. A 134, 1429 (1964).ADSGoogle Scholar
  3. 3.
    S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).CrossRefADSGoogle Scholar
  4. 4.
    G. L. Lamb, Jr., Rev. Mod. Phys. 43, 99 (1971).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, Phys. Rev. A 52, 3082 (1995).CrossRefADSGoogle Scholar
  6. 6.
    M. Müler, V. P. Kalosha, and J. Herrmann, Phys. Rev. A 58, 1372 (1998).ADSGoogle Scholar
  7. 7.
    S. Hughes, Phys. Rev. Lett. 81, 3363 (1998).ADSGoogle Scholar
  8. 8.
    J. Xiao, Z. Y. Wang, and Z. Z. Xu, Phys. Rev. A 65, 031402R (2002).Google Scholar
  9. 9.
    S. Hughes, Phys. Rev. A 62, 055 401 (2000).Google Scholar
  10. 10.
    X. H. Song, S. Q. Gong, S. Q. Jin, and Z. Z. Xu, Phys. Rev. A 69, 015 801 (2004).Google Scholar
  11. 11.
    S. E. Harris, Phys. Rev. Lett. 72, 52 (1994).CrossRefADSGoogle Scholar
  12. 12.
    J. H. Eberly, M. L. Pons, and H. R. Haq, Phys. Rev. Lett. 72, 56 (1994).CrossRefADSGoogle Scholar
  13. 13.
    J. H. Eberly, Quantum Semiclassic. Opt. 7, 373 (1995).ADSGoogle Scholar
  14. 14.
    J. H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76, 3687 (1996).CrossRefADSGoogle Scholar
  15. 15.
    R. Grobe, F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett. 73, 3183 (1994).CrossRefADSGoogle Scholar
  16. 16.
    M. Fleischhauer and A. S. Manka, Phys. Rev. A 54, 794 (1996).CrossRefADSGoogle Scholar
  17. 17.
    V. G. Arkhipkin and I. V. Timofeev, Phys. Rev. A 64, 053811 (2001).Google Scholar
  18. 18.
    G. G. Grigoryan and Y. T. Pashayan, Phys. Rev. A 64, 013816 (2001).Google Scholar
  19. 19.
    F. T. Hioe and R. Grobe, Phys. Rev. Lett. 73, 2559 (1994).CrossRefADSGoogle Scholar
  20. 20.
    A. Rahman, Phys. Rev. A 60, 4187 (1999).CrossRefADSGoogle Scholar
  21. 21.
    J. N. Sweetser and I. A. Walmsley, J. Opt. Soc. Am. B 13, 601 (1996).ADSGoogle Scholar
  22. 22.
    R. Netz and T. Feurer, Phys. Rev. A 64, 043808 (2001).Google Scholar
  23. 23.
    C. E. Theodosiou, Phys. Rev. A 30, 2881 (1984).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • X. Song
    • 1
  • S. Gong
    • 1
  • Z. Xu
    • 1
  1. 1.Laboratory for High Intensity Optics, Shanghai Institute of Optics and Fine MechanicsShanghaiChina

Personalised recommendations