Journal of Experimental and Theoretical Physics

, Volume 101, Issue 3, pp 568–574 | Cite as

Thermal 1/ω fluctuations of a quantum oscillator under a parametric effect of a random field

  • B. A. Veklenko
Statistical, Nonlinear, and Soft Matter Physics


It is shown that the effect of a time-correlated Gaussian random field of sufficiently high intensity on the elasticity coefficient of a quantum oscillator manifests itself in the generation of thermal fluctuations with a 1/ω spectrum in the oscillator. It is also shown that, in any physical system described by the equation of an anharmonic oscillator, fluctuations with a 1/ω spectrum arise at an above-critical temperature.


Spectroscopy State Physics Field Theory High Intensity Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. N. Bochkov and Yu. E. Kuzovlev, Usp. Fiz. Nauk 141, 151 (1983) [Sov. Phys. Usp. 26, 829 (1983)].Google Scholar
  2. 2.
    G. P. Zhigal’skii, Usp. Fiz. Nauk 173, 465 (2003) [Phys. Usp. 46, 449 (2003)].Google Scholar
  3. 3.
    J. B. Jonson, Phys. Rev. 26, 71 (1925).ADSGoogle Scholar
  4. 4.
    P. H. Handel, Phys. Rev. A 22, 745 (1980).CrossRefADSGoogle Scholar
  5. 5.
    T. Musha, in Proceedings of the 17th Conference on Noise in Physical System and 1/f Fluctuations, Ed. by J. Sikula (Prague, 2003), p. 3.Google Scholar
  6. 6.
    H. Furukava, Phys. Rev. A 34, 2315 (1986).ADSGoogle Scholar
  7. 7.
    B. Pellegrini, in Proceedings of the 15th International Conference on Noise in Physical Systems and 1/f Fluctuations, Ed. by C. Surya (Hong Kong, 1999), p. 303.Google Scholar
  8. 8.
    Sh. M. Kogan and K. E. Nogaev, Solid State Commun. 49, 387 (1984).CrossRefGoogle Scholar
  9. 9.
    M. N. Mihaila, in Proceedings of the 16th International Conference on Noise in Physical Systems and 1/f Fluctuations, Ed. by G. Bosman (Floride, USA, 2001), p. 169.Google Scholar
  10. 10.
    V. N. Skokov, V. P. Koverda, and A. V. Reshetnikov, Zh. Éksp. Teor. Fiz. 119, 613 (2001) [JETP 92, 535 (2001)].Google Scholar
  11. 11.
    R. F. Voss and J. Clarke, Phys. Rev. Lett. 36, 42 (1976).CrossRefADSGoogle Scholar
  12. 12.
    T. Musha, G. Borbely, and M. Shoji, Phys. Rev. Lett. 64, 2394 (1990).Google Scholar
  13. 13.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    R. Kubo, in Thermodynamics of Irreversible Processes, Ed. by D. N. Zubarev (Inostrannaya Literatura, Moscow, 1962), p. 345 [in Russian].Google Scholar
  15. 15.
    S. V. Tyablikov, Ukr. Mat. Zh. 11, 287 (1959).zbMATHMathSciNetGoogle Scholar
  16. 16.
    J. Ward, Phys. Rev. 78, 182 (1950).CrossRefADSzbMATHGoogle Scholar
  17. 17.
    A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, 3rd ed. (Nauka, Moscow, 1969; Wiley, New York, 1965).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • B. A. Veklenko
    • 1
  1. 1.Institute of High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations