Advertisement

Journal of Experimental and Theoretical Physics

, Volume 101, Issue 3, pp 481–486 | Cite as

Magnetic relaxation in rare-earth oxide pyrochlores

  • I. A. Ryzhkin
Order, Disorder, and Phase Transitions in Condensed Systems

Abstract

A theory of magnetic relaxation is developed for geometrically frustrated three-dimensional magnets that can be described by an antiferromagnetic Ising model. These magnetic materials are exemplified by some of the recently synthesized rare-earth oxide pyrochlores, such as Dy2Ti2O7, Ho2Ti2O7, or Yb2Ti2O7. A model based on an analogy between the spin ordering in Ising magnets and proton ordering in ice is proposed. In this model, magnetic point defects treated as noninteracting quasiparticles characterized by well-defined energies, mobilities, and effective magnetic charges play a fundamental role analogous to that of ion defects in the physics of ice or by electrons and holes in semiconductors. The proposed model is used to derive expressions for magnetic susceptibility as a function of frequency and temperature.

Keywords

Oxide Spectroscopy State Physics Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).Google Scholar
  2. 2.
    G. N. Wannier, Phys. Rev. 79, 357 (1950).CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    M. J. Harris, S. T. Bramwell, D. F. McMorrow, et al., Phys. Rev. Lett. 79, 2554 (1997).ADSGoogle Scholar
  4. 4.
    A. P. Ramirez, A. Hayashi, R. J. Cava, et al., Nature 399, 333 (1999).ADSGoogle Scholar
  5. 5.
    C. Jaccard, J. Phys.: Condens. Matter 3, 99 (1964).Google Scholar
  6. 6.
    V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford Univ. Press, Oxford, 1999).Google Scholar
  7. 7.
    P. W. Anderson, Phys. Rev. 102, 1008 (1956).ADSGoogle Scholar
  8. 8.
    I. A. Ryzhkin, Solid State Commun. 52, 49 (1984).CrossRefGoogle Scholar
  9. 9.
    I. A. Ryzhkin, in Physics and Chemistry of Ice, Ed. by N. Maeno and T. Hondoh (Hokkaido Univ. Press, Sapporo, 1992), p. 141.Google Scholar
  10. 10.
    N. Bjerrum, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 27, 1 (1951).Google Scholar
  11. 11.
    H. Granicher, C. Jaccard, P. Sherrer, and A. Steinemann, Discuss. Faraday Soc. 23, 50 (1957).Google Scholar
  12. 12.
    L. Onsager and M. Dupuis, in Termodinamica dei processi irreversibili, Rendiconti della Scuola Internazionale di Fisica “Enrico Fermi” (Varenna, 1959), Corso X, p. 294.Google Scholar
  13. 13.
    L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).Google Scholar
  14. 14.
    S. V. Isakov, R. Moessner, and S. L. Sondhi, cond-mat/0502137.Google Scholar
  15. 15.
    J. F. Nagle, Chem. Phys. 43, 317 (1979).CrossRefGoogle Scholar
  16. 16.
    I. A. Ryzhkin and R. W. Whitworth, J. Phys.: Condens. Matter 9, 395 (1997).CrossRefADSGoogle Scholar
  17. 17.
    V. F. Petrenko and I. A. Ryzhkin, Zh. Éksp. Teor. Fiz. 87, 558 (1984) [Sov. Phys. JETP 60, 320 (1984)].ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • I. A. Ryzhkin
    • 1
  1. 1.Institute of Solid-State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations