Electronic structure of FCC carbon

  • A. Tapia
  • G. Canto
  • G. Murrieta
  • R. de Coss
Condensed Matter


We report first-principles calculations of the electronic structure for carbon in the fcc structure with the experimentally observed lattice parameter. The calculated orbital population shows that the chemical bond in fcc carbon is close to the s2p2 bonding with a small s-p hybridization. We find that, in contrast to graphite and diamond, fcc carbon exhibits metallic behavior with an electronic density of states at the Fermi level of 0.5 states/(eV atom).

PACS numbers

71.18.+y 71.20.Gj 72.15.Eb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Young, Phase Diagrams of the Elements (Univ. of California Press, California, 1991).Google Scholar
  2. 2.
    L. S. Palatnik, M. B. Guseva, V. G. Babaev, et al., Sov. Phys. JETP 60, 520 (1984).Google Scholar
  3. 3.
    N. F. Savchenko, M. B. Guseva, V. G. Babaev, and L. S. Palatnik, Phys. Chem. Mech. Surf. 4, 1816 (1986).Google Scholar
  4. 4.
    S. M. Jarkov, Y. N. Titarenko, and G. N. Churilov, Carbon 36, 595 (1998).CrossRefGoogle Scholar
  5. 5.
    I. Konyashin, A. Zern, J. Mayer, et al., Diamond Relat. Mater. 10, 99 (2001).Google Scholar
  6. 6.
    I. Konyashin, V. Babaev, M. Guseva, et al., Vacuum 66, 175 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Fatow, I. Konyashin, V. Babaev, et al., Vacuum 68, 75 (2003).Google Scholar
  8. 8.
    P. Ordejón, E. Artacho, and J. M. Soler, Phys. Rev. B 53, 10 441 (1996).Google Scholar
  9. 9.
    P. Ordejón, Phys. Status Solidi B 217, 335 (2000).ADSGoogle Scholar
  10. 10.
    J. M. Soler, E. Artacho, J. D. Gale, et al., J. Phys.: Condens. Matter 14, 2745 (2002).CrossRefADSGoogle Scholar
  11. 11.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).ADSGoogle Scholar
  12. 12.
    O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 (1989).CrossRefADSGoogle Scholar
  13. 13.
    J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  14. 14.
    J. Moreno and J. M. Soler, Phys. Rev. B 45, 13 891 (1992).Google Scholar
  15. 15.
    S. M. Jarkov, V. S. Zhigalov, and G. I. Frolov, in Proceedings of Conference on Ultrafine Powders, Materials and Nanostructures (Krasnoyarsk, Russia, 1996), p. 29.Google Scholar
  16. 16.
    A. Kokalj, J. Mol. Graph. Model. 17, 176 (1999); Scholar
  17. 17.
    G. Galli, R. Martin, R. Car, and M. Parrinelo, Phys. Rev. B 42, 7470 (1990).CrossRefADSGoogle Scholar
  18. 18.
    A. D. Zdetsis, E. N. Economou, and D. A. Papaconstantopoulos, J. Phys. F: Met. Phys. 10, 1149 (1980).CrossRefADSGoogle Scholar
  19. 19.
    K. Horn, B. Rihl, A. Zartner, et al., Phys. Rev. B 30, 1711 (1984).CrossRefADSGoogle Scholar
  20. 20.
    D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986), p. 221.Google Scholar
  21. 21.
    T. S. Choy, J. Naset, J. Chen, et al.,

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. Tapia
    • 1
  • G. Canto
    • 2
  • G. Murrieta
    • 1
  • R. de Coss
    • 1
  1. 1.Departamento de Física AplicadaCINVESTAV—MéridaYucatánMéxico
  2. 2.Centro de Ciencias de la Materia CondensadaUNAMEnsenada B.C.México

Personalised recommendations