Advertisement

Optics and Spectroscopy

, Volume 99, Issue 3, pp 498–502 | Cite as

Thermal fluctuations of a quantized electromagnetic field in weakly absorbing media

  • B. A. Veklenko
  • Yu. B. Sherkunov
Quantum-Electrodynamic Processes Near the Surface
  • 51 Downloads

Abstract

The quantum fluctuations of an electromagnetic field in thermally excited media are calculated using the quantum electrodynamical method of Γ operators and without invoking phenomenological elements. The drawbacks of the standard theory based on the fluctuation-dissipation theorem and on the Matsubara technique of temperature Green’s functions are indicated. The decisive role of the correct consideration of higher order photon-photon correlators and the inadmissibility of their approximation by products of lower order correlators are underlined. It is shown that, contrary to the accepted opinion, the quantum fluctuations of an electromagnetic field cannot be expressed via the refractive indices of media introduced into the theory for the calculation of mean fields. The results obtained are compared with those previously derived using the Matsubara technique for calculation of the Green’s functions of an electromagnetic field in dispersive media under conditions of thermodynamic equilibrium. The previous results are shown to be incorrect at least for media consisting of atoms or molecules with a discrete energy spectrum.

Keywords

Refractive Index Electromagnetic Field Decisive Role Optical Spectroscopy Standard Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Rytov, Theory of Electrical Fluctuation (Akad. Nauk SSSR, Moscow, 1953) [in Russian].Google Scholar
  2. 2.
    S. M. Rytov, Dokl. Akad. Nauk SSSR 87(4), 535 (1952).Google Scholar
  3. 3.
    P. Langevin, C. R. Acad. Sci., Paris 146, 530 (1908).zbMATHGoogle Scholar
  4. 4.
    M. A. Leontovich and S. M. Rytov, Zh. Éksp. Teor. Fiz. 23, 246 (1952).Google Scholar
  5. 5.
    Yu. K. Zemtsov, A. Yu. Sechin, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 114(1), 135 (1998) [JETP 87 (1), 76 (1998)].Google Scholar
  6. 6.
    E. M. Lifshitz, Dokl. Akad. Nauk SSSR 97(4), 643 (1954).Google Scholar
  7. 7.
    E. M. Lifshitz, Zh. Éksp. Teor. Fiz. 29(1), 94 (1956) [Sov. Phys. JETP 2 (1), 73 (1956)].Google Scholar
  8. 8.
    H. B. C. Casimir and D. Polder, Phys. Rev. 73(4), 360 (1948).CrossRefADSGoogle Scholar
  9. 9.
    H. B. Callen and T. A. Welton, Phys. Rev. 83(1), 34 (1951).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    H. B. Callen, M. L. Barash, and J. L. Jackson, Phys. Rev. 88(6), 1382 (1952).CrossRefADSGoogle Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960; Nauka, Moscow, 1970).Google Scholar
  12. 12.
    M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Flotations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].Google Scholar
  13. 13.
    S. M. Rytov, Dokl. Akad. Nauk SSSR 110(3), 371 (1956) [Sov. Phys. Dokl. 110 (3), 58 (1956)].MathSciNetGoogle Scholar
  14. 14.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radio Physics (Nauka, Moscow, 1978), Part 2.Google Scholar
  15. 15.
    Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].Google Scholar
  16. 16.
    A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, 3rd ed. (Nauka, Moscow, 1969; Wiley, New York, 1965).Google Scholar
  17. 17.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 114(2), 492 (1998) [JETP 87 (2), 270 (1998)].Google Scholar
  18. 18.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, New Jersey, 1963).Google Scholar
  19. 19.
    B. A. Veklenko, R. B. Gusarov, and Yu. B. Sherkunov, Zh. Éksp. Teor. Fiz. 113(2), 521 (1998) [JETP 86 (2), 289 (1998)].Google Scholar
  20. 20.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 96, 457 (1989) [Sov. Phys. JETP 69, 258 (1989)].Google Scholar
  21. 21.
    B. A. Veklenko, Zh. Éksp. Teor. Fiz. 119(6), 1087 (2001) [JETP 92 (6), 940 (2001)].Google Scholar
  22. 22.
    Yu. L. Klimontovich, Usp. Fiz. Nauk 151, 309 (1987) [Sov. Phys. Usp. 30 (2), 154 (1987)].MathSciNetGoogle Scholar
  23. 23.
    V. L. Ginzburg and L. P. Pitaevskii, Usp. Fiz. Nauk 151, 333 (1987) [Sov. Phys. Usp. 30 (2), 168 (1987)].MathSciNetGoogle Scholar
  24. 24.
    V. I. Tatarskii, Usp. Fiz. Nauk 151, 273 (1987) [Sov. Phys. Usp. 30 (2), 134 (1987)].MathSciNetGoogle Scholar
  25. 25.
    P. Shiktorov, E. Starikov, V. Gruzinskis, and L. Reggiani, in Proceedings of the 17th International Conference on Noise and Fluctuations, Prague, 2003, Ed. by J. Sikula (Prague, 2003), p. 31.Google Scholar
  26. 26.
    C. W. Ford and R. F. O’Connell, Phys. Rev. Lett. 77(5), 798 (1996).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    H. Crabert, Z. Phys. B: Condens. Matter 49(3), 161 (1982).Google Scholar
  28. 28.
    P. Talkner, Ann. Phys. (N.Y.) 167(2), 390 (1986).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • B. A. Veklenko
    • 1
  • Yu. B. Sherkunov
    • 2
  1. 1.Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Institute for High Energy Densities, Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations