Optics and Spectroscopy

, Volume 99, Issue 3, pp 397–403 | Cite as

The practicality of adaptive phase estimation

  • D. T. Pope
  • D. W. Berry
  • N. K. Langford
Quantum Optics in Phase Space


Adaptive phase estimation is the process of estimating the phase of an electromagnetic field via a continually changing measurement. The measurement is varied in an attempt to optimize it at each moment. In this paper, we show that adaptive phase estimation is more accurate than nonadaptive phase estimation for continuous beams of light even when small time delays in the feedback are present.


Spectroscopy Time Delay Electromagnetic Field Small Time Optical Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Berry, H. M. Wiseman, and J. K. Breslin, Phys. Rev. A 63, 053804 (2001).Google Scholar
  2. 2.
    S. L. Braunstein, A. S. Lane, and C. M. Caves, Phys. Rev. Lett. 69, 213 (1992); B. C. Sanders and G. J. Milburn, Phys. Rev. Lett. 75, 2944 (1995); H. Mabuchi, Quantum Semiclassic. Opt. 8, 1103 (1996); F. Verstraete, A. C. Doherty, and H. Mabuchi, Phys. Rev. A 64, 032111 (2001); P. Warszawski, J. Gambetta, and H. M. Wiseman, Phys. Rev. A 69, 042104 (2004).CrossRefGoogle Scholar
  3. 3.
    H. W. Wiseman, Phys. Rev. Lett. 75, 4587 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    M. J. Hall and I. G. Fuss, Quantum Opt. 3, 147 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    C. M. Caves and P. D. Drummond, Rev. Mod. Phys. 66, 481 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    H. M. Wiseman and R. B. Killip, Phys. Rev. A 56, 944 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    H. M. Wiseman and R. B. Killip, Phys. Rev. A 57, 2169 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    D. W. Berry and H. M. Wiseman, Phys. Rev. A 65, 043803 (2002).Google Scholar
  9. 9.
    D. T. Pope, H. M. Wiseman, and N. K. Langford, quant-ph/0405066.Google Scholar
  10. 10.
    D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988).ADSGoogle Scholar
  11. 11.
    H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-24, 675 (1978).MathSciNetGoogle Scholar
  12. 12.
    H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-24, 78 (1978).MathSciNetGoogle Scholar
  13. 13.
    J. H. Shapiro, H. P. Yuen, and J. A. Machado Mata, IEEE Trans. Inf. Theory IT-25, 179 (1979).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. H. Shapiro and S. S. Wagner, IEEE J. Quantum Electron. QE-20, 803 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    J. H. Shapiro, IEEE J. Quantum Electron. QE-21, 237 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995; Fizmatlit, Moscow, 2000).Google Scholar
  17. 17.
    Stochastic Control of Partially Observable Systems (Cambridge Univ. Press, Cambridge, 1992).Google Scholar
  18. 18.
    T. P. McGarty, Stochastic Systems and State Estimation (Addison-Wesley, Sydney, 1974).Google Scholar
  19. 19.
    A. S. Holevo, Lect. Notes Math. 1055, 153 (1994).MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Doherty et al., Phys. Rev. A 62, 012015 (2000).Google Scholar
  21. 21.
    U. Leonhardt, J. A. Vaccaro, B. Böhner, and H. Paul, Phys. Rev. A 51, 84 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    D. W. Berry and H. M. Wiseman, J. Mod. Opt. 48, 797 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    M. A. Armen et al., Phys. Rev. Lett. 89, 133602 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • D. T. Pope
    • 1
  • D. W. Berry
    • 2
  • N. K. Langford
    • 2
    • 3
  1. 1.Centre for Quantum Dynamics, School of ScienceGriffith UniversityBrisbaneAustralia
  2. 2.School of Physical SciencesUniversity of QueenslandBrisbaneAustralia
  3. 3.Centre for Quantum Computer TechnologyUniversity of QueenslandBrisbaneAustralia

Personalised recommendations