Physics of the Solid State

, Volume 47, Issue 9, pp 1748–1754 | Cite as

Nonadiabatic effects in the lattice dynamics of compressed rare-gas crystals

  • E. P. Troitskaya
  • Val. V. Chabanenko
  • E. E. Horbenko
Lattice Dynamics and Phase Transitions

Abstract

Electron-ion contributions to the energy of rare-gas crystals are discussed from first principles in the framework of the Tolpygo model and its variants. The frequencies of phonons in a neon crystal at pressures p ≠ 0 are calculated in terms of models that go beyond the scope of the adiabatic approximation. Analysis of the contributions from different interactions to the lattice dynamics of the crystals demonstrates that the phonon frequencies calculated in the framework of the simplest model (allowing only for the nearest neighbors) and the most complex model (with the inclusion of the nearest neighbors, next-nearest neighbors, nonadiabatic effects, etc.) for small wave vectors are close to each other. The difference between the phonon frequencies calculated within the above models is most pronounced at the Brillouin zone boundary. Under strong compression, the phonon spectrum along the Δ direction is distorted and the longitudinal mode is softened as a result of the electron-phonon interaction. The contribution from terms of higher orders in the overlap integral S at p ≠ 0 to the phonon frequencies is more significant than that obtained in the band-structure calculations of the neon crystal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Krisch, J. Raman Spectrosc. 34, 628 (2003).Google Scholar
  2. 2.
    E. V. Zarochentsev and E. P. Troitskaya, Fiz. Tverd. Tela (St. Petersburg) 44(7), 1309 (2002) [Phys. Solid State 44 (7), 1370 (2002)].Google Scholar
  3. 3.
    E. V. Zarochentsev, E. P. Troitskaya, and V. V. Chabanenko, Fiz. Tverd. Tela (St. Petersburg) 46(2), 245 (2004) [Phys. Solid State 46 (2), 231 (2004)].Google Scholar
  4. 4.
    A. P. Jephcoat, H. K. Mao, L. W. Finger, D. F. Lox, R. J. Hemley, and C. S. Zha, Phys. Rev. Lett. 59(2), 2670 (1987).CrossRefADSGoogle Scholar
  5. 5.
    B. B. Karki and R. M. Wentzcovitch, Phys. Rev. B 68(22), 224304 (2003).Google Scholar
  6. 6.
    V. I. Peresada, Zh. Éksp. Teor. Fiz. 53(2), 605 (1967) [Sov. Phys. JETP 26, 389 (1967)].Google Scholar
  7. 7.
    M. T. Yin and M. L. Cohen, Solid State Commun. 43(5), 391 (1982).CrossRefGoogle Scholar
  8. 8.
    I. V. Abarenkov, I. M. Antonova, V. G. Bar’yakhtar, V. L. Bulatov, and E. V. Zarochentsev, in Methods of Computer Physics in the Solid-State Theory: Electronic Structure of Ideal and Defect Crystals (Naukova Dumka, Kiev, 1991) [in Russian].Google Scholar
  9. 9.
    S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).CrossRefADSGoogle Scholar
  10. 10.
    K. B. Tolpygo, Zh. Éksp. Teor. Fiz. 20(3), 497 (1950).Google Scholar
  11. 11.
    K. B. Tolpygo and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 13(4), 1135 (1971) [Sov. Phys. Solid State 13 (4), 939 (1971)].Google Scholar
  12. 12.
    M. A. Belogolovskii, K. B. Tolpygo, and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 13(7), 2109 (1971) [Sov. Phys. Solid State 13 (7), 1765 (1971)].Google Scholar
  13. 13.
    E. P. Troitskaya, Doctoral Dissertation in Physics and Mathematics (Kiev, 1987).Google Scholar
  14. 14.
    V. G. Bar’yakhtar, E. V. Zarochentsev, and E. P. Troitskaya, Theory of Adiabatic Potential and Atomic Properties of Simple Metals (Gordon and Breach, London, 1999).Google Scholar
  15. 15.
    E. V. Zarochentsev, S. M. Orel, and I. E. Dragunov, Fiz. Met. Metalloved. 67(5), 837 (1989).Google Scholar
  16. 16.
    E. V. Zarochentsev, I. E. Dragunov, and S. M. Orel, Fiz. Tverd. Tela (Leningrad) 31(11), 314 (1989) [Sov. Phys. Solid State 31 (11), 2020 (1989)].Google Scholar
  17. 17.
    I. E. Dragunov, Candidate’s Dissertation (Donetsk, 1992).Google Scholar
  18. 18.
    K. B. Tolpygo and I. G. Zaslavskaya, Ukr. Fiz. Zh., No. 1, 226 (1956).Google Scholar
  19. 19.
    K. B. Tolpygo and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 14(10), 2867 (1972) [Sov. Phys. Solid State 14 (10), 2480 (1972)].Google Scholar
  20. 20.
    V. L. Dorman, E. V. Zarochentsev, and E. P. Troitskaya, Fiz. Nizk. Temp. (Kiev) 8(1), 94 (1982).Google Scholar
  21. 21.
    V. L. Dorman, E. V. Zarochentsev, and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 23(6), 1581 (1981) [Sov. Phys. Solid State 23 (6), 925 (1981)].Google Scholar
  22. 22.
    E. V. Zarochentsev and E. P. Troitskaya, Fiz. Tverd. Tela (St. Petersburg) 43(7), 1292 (2001) [Phys. Solid State 43 (7), 1345 (2001)].Google Scholar
  23. 23.
    I. V. Abarenkov and I. M. Antonova, Fiz. Tverd. Tela (Leningrad) 20(2), 565 (1978) [Sov. Phys. Solid State 20 (2), 326 (1978)].Google Scholar
  24. 24.
    K. B. Tolpygo and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 17(1), 102 (1975) [Sov. Phys. Solid State 17 (1), 58 (1975)].Google Scholar
  25. 25.
    V. G. Bar’yakhtar, E. V. Zarochentsev, E. P. Troitskaya, and Yu. V. Eremeichenkova, Fiz. Tverd. Tela (St. Petersburg) 40(8), 1464 (1998) [Phys. Solid State 40 (8), 1330 (1998)].Google Scholar
  26. 26.
    E. V. Zarochentsev, E. P. Troitskaya, and V. V. Chabanenko, Fiz. Tekh. Vys. Davlenii 13(4), 7 (2003).Google Scholar
  27. 27.
    K. Rosciszewski, B. Paulus, P. Fulde, and H. Stoll, Phys. Rev. B 60(11), 7905 (1999).ADSGoogle Scholar
  28. 28.
    R. J. Hemley, C. S. Zha, A. P. Jephcoat, H. K. Mao, L. M. Finger, and D. X. Cox, Phys. Rev. B 39(16), 11820 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • E. P. Troitskaya
    • 1
  • Val. V. Chabanenko
    • 1
  • E. E. Horbenko
    • 2
  1. 1.Donetsk Institute of Physics and TechnologyNational Academy of Sciences of UkraineDonetskUkraine
  2. 2.Shevchenko National Pedagogical UniversityLuganskUkraine

Personalised recommendations