Ground-state properties of a one-dimensional system of dipoles

  • A. S. Arkhipov
  • G. E. Astrakharchik
  • A. V. Belikov
  • Yu. E. Lozovik
Condensed Matter

Abstract

A one-dimensional (1D) Bose system with dipole-dipole repulsion is studied at zero temperature by means of a quantum Monte Carlo method. It is shown that, in the limit of small linear density, the bosonic system of dipole moments acquires many properties of a system of noninteracting fermions. At larger linear densities, a variational Monte Carlo calculation suggests a crossover from a liquidlike to a solidlike state. The system is superfluid on the liquidlike side of the crossover and is normal deep on the solidlike side. Energy and structural functions are presented for a wide range of densities. Possible realizations of the model are 1D Bose atomic systems, with permanent dipoles or dipoles induced by static field or resonance radiation; or indirect excitons in coupled quantum wires; etc. We propose parameters of a possible experiment and discuss manifestations of the zero-temperature quantum crossover.

PACS numbers

61.20.Ja 64.30.+t 67.40.Hf 68.65.La 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. O. Schmidt, S. Hensler, J. Werner, et al., Phys. Rev. Lett. 91, 193201 (2003).Google Scholar
  2. 2.
    J. M. Doyle, R. deCarvalho, C. I. Hancox, and J. M. Doyle, Phys. Rev. A 65, 021604 (2002).Google Scholar
  3. 3.
    J. Stuhler, P. O. Schmidt, S. Hensler, et al., Phys. Rev. A 64, 031405 (2001).Google Scholar
  4. 4.
    C. C. Bradley et al., Phys. Rev. A 61, 053407 (2000).Google Scholar
  5. 5.
    Yu. E. Lozovik, S. Y. Volkov, and M. Willander, JETP Lett. 79, 473 (2004); Yu. E. Lozovik, S. A. Verzakov, and M. Willander, Phys. Lett. A 260, 405 (1999); A. I. Belousov, S. A. Verzakov, and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 114, 322 (1998) [JETP 86, 146 (1998)].Google Scholar
  6. 6.
    S. Giovanazzi, A. Görlitz, and T. Pfau, Phys. Rev. Lett. 89, 130401 (2002).Google Scholar
  7. 7.
    D. Jaksch, J. I. Cirac, P. Zoller, et al., Phys. Rev. Lett. 85, 2208 (2000).CrossRefADSGoogle Scholar
  8. 8.
    G. K. Brennen, I. H. Deutsch, and C. J. Williams, Phys. Rev. A 65, 022313 (2002).Google Scholar
  9. 9.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).Google Scholar
  10. 10.
    P. M. Lushnikov, Phys. Rev. A 66, 051601 (2002).Google Scholar
  11. 11.
    D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. Rev. Lett. 92, 250 401 (2004).Google Scholar
  12. 12.
    K. Göral, L. Santos, and M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002); M. Baranov, L. Dobrek, K. Goral, et al., Phys. Scr. 102, 74 (2002).Google Scholar
  13. 13.
    E. Krotscheck and M. D. Miller, Phys. Rev. B 60, 13038 (1999); M. C. Gordillo, J. Boronat, and J. Casulleras, Phys. Rev. B 61, R878 (2000); M. C. Gordillo, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 85, 2348 (2000).Google Scholar
  14. 14.
    O. L. Berman, Yu. E. Lozovik, D. W. Snoke, and R. D. Coalson, Phys. Rev. B 70, 235310 (2004); Yu. E. Lozovik, I. V. Ovchinnikov, R. P. Ostroumov, and K. L. Wang, Phys. Status Solidi B 241, 85 (2004); Yu. E. Lozovik, I. V. Ovchinnikov, and V. A. Sharapov, JETP 98, 582 (2004); Yu. E. Lozovik, O. L. Berman, and V. G. Tsvetus, Phys. Rev. B 59, 5627 (1999); Yu. E. Lozovik and O. K. Berman, JETP Lett. 64, 573 (1996); Yu. E. Lozovik, O. L. Berman, and A. M. Ruvinskii, JETP Lett. 69, 616 (1999); Yu. E. Lozovik and A. V. Poushnov, Phys. Lett. A 228, 399 (1997); Yu. E. Lozovik, O. L. Berman, and M. Willander, J. Phys. C 14, 12457 (2002).Google Scholar
  15. 15.
    Yu. E. Lozovik and V. I. Yudson, JETP Lett. 22, 11 (1975); Sov. Phys. JETP 44, 389 (1976); Solid State Commun. 21, 211 (1977); Physica A (Amsterdam) 93, 493 (1978).ADSGoogle Scholar
  16. 16.
    Xu. Zhu, P. B. Littlewood, M. S. Hybertsen, and T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995); S. Conti, G. Vignale, and A. H. MacDonald, Phys. Rev. B 57, R6846 (1998); M. A. Olivares-Robles and S. E. Ulloa, Phys. Rev. B 64, 115 302 (2001).CrossRefADSGoogle Scholar
  17. 17.
    S. De Palo, F. Rapisauda, and G. Senatore, Phys. Rev. Lett. 88, 206401 (2002).Google Scholar
  18. 18.
    A. A. Dremin, V. B. Timofeev, A. V. Larionov, et al., JETP Lett. 76, 450 (2002); R. Rapaport, G. Chen, D. Snoke, et al., Phys. Rev. Lett. 92, 117405 (2004); L. V. Butov, L. S. Levitov, A. V. Mintsev, et al., Phys. Rev. Lett. 92, 117404 (2004); V. V. Krivolapchuk, E. S. Moskalenko, and A. L. Zhmodikov, Phys. Rev. B 64, 045313 (2001).ADSGoogle Scholar
  19. 19.
    For details on the DMC method see, for example, J. Boronat and J. Casulleras, Phys. Rev. B 49, 8920 (1994).CrossRefADSGoogle Scholar
  20. 20.
    M. Girardeau, J. Math. Phys. 1, 516 (1960).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    G. E. Astrakharchik and S. Giorgini, Phys. Rev. A 66, 053614 (2002).Google Scholar
  22. 22.
    B. Sutherland, J. Math. Phys. 12, 246 (1971); F. Calogero, J. Math. Phys. 10, 2191 (1969); J. Math. Phys. 10, 2197 (1969).Google Scholar
  23. 23.
    Dynamics and Thermodynamics of Systems with Long-Range Interactions, Ed. by T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens (Springer, Berlin, 2002).Google Scholar
  24. 24.
    E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).ADSMathSciNetGoogle Scholar
  25. 25.
    E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987); S. Zhang, N. Kawashima, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 74, 1500 (1995).CrossRefADSGoogle Scholar
  26. 26.
    G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. A 66, 023603 (2002).Google Scholar
  27. 27.
    D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, Ed. by K. Binder (Springer, Berlin, 1979; Mir, Moscow, 1982).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • A. S. Arkhipov
    • 1
  • G. E. Astrakharchik
    • 1
    • 2
  • A. V. Belikov
    • 1
  • Yu. E. Lozovik
    • 1
  1. 1.Institute of SpectroscopyRussian Academy of SciencesTroitsk, Moscow regionRussia
  2. 2.Dipartimento di FisicaUniversitá di Trento, and BEC-INFMPovoItaly

Personalised recommendations