Astronomy Letters

, Volume 31, Issue 9, pp 620–626 | Cite as

Electron acceleration by electric fields near the footpoints of current-carrying coronal magnetic loops

  • V. V. Zaitsev


We analyze the electric fields that arise at the footpoints of a coronal magnetic loop from the interaction between a convective flow of partially ionized plasma and the magnetic field of the loop. Such a situation can take place when the loop footpoints are at the nodes of several supergranulation cells. In this case, the neutral component of the converging convective flows entrain electrons and ions in different ways, because these are magnetized differently. As a result, a charge-separating electric field emerges at the loop footpoints, which can efficiently accelerate particles inside the magnetic loop under appropriate conditions. We consider two acceleration regimes: impulsive (as applied to simple loop flares) and pulsating (as applied to solar and stellar radio pulsations). We have calculated the fluxes of accelerated electrons and their characteristic energies. We discuss the role of the return current when dense beams of accelerated particles are injected into the corona. The results obtained are considered in light of the currently available data on the corpuscular radiation from solar flares.

Key words

Sun solar corona magnetic loops electron acceleration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Aurass, K. L. Klein, E. Ya. Zlotnik, and V. V. Zaitsev, Astron. Astrophys. 410, 1001 (2003).CrossRefADSGoogle Scholar
  2. 2.
    R. C. Canfield and K. G. Gayley, Astrophys. J. 322, 999 (1987).CrossRefADSGoogle Scholar
  3. 3.
    J. D. Cox and W. N. Bennet, Phys. Fluids 13, 182 (1970).CrossRefGoogle Scholar
  4. 4.
    A. G. Emslie, J. C. Brown, and M. T. Machado, Astrophys. J. 246, 337 (1981).CrossRefADSGoogle Scholar
  5. 5.
    V. M. Fadeev, I. F. Kvartskhava, and N. N. Komarov, Yad. Sint. 5, 202 (1965).Google Scholar
  6. 6.
    D. A. Hammer and N. Rostoker, Phys. Fluids 13, 1831 (1970).CrossRefGoogle Scholar
  7. 7.
    J. C. Henoux and B. V. Somov, Astron. Astrophys. 241, 613 (1991).ADSGoogle Scholar
  8. 8.
    G. D. Holman, Astrophys. J. 293, 584 (1985).CrossRefADSGoogle Scholar
  9. 9.
    G. D. Holman and S. G. Benka, Astrophys. J. 400, L79 (1992).CrossRefADSGoogle Scholar
  10. 10.
    M. L. Khodachenko and V. V. Zaitsev, Astrophys. Space Sci. 279, 389 (2002).CrossRefADSGoogle Scholar
  11. 11.
    H. Knoepfel and D. A. Strong, Nucl. Fusion 19, 785 (1979).ADSGoogle Scholar
  12. 12.
    R. Lee and R. H. Sudan, Phys. Fluids 14, 1213 (1971).Google Scholar
  13. 13.
    Yu. E. Litvinenko, Astrophys. J. 462, 997 (1996).CrossRefADSGoogle Scholar
  14. 14.
    R. V. Lovelace and R. N. Sudan, Phys. Rev. Lett. 27, 1256 (1971).CrossRefADSGoogle Scholar
  15. 15.
    J. T. Mariska, A. G. Emslie, and P. Li, Astrophys. J. 341, 1067 (1989).CrossRefADSGoogle Scholar
  16. 16.
    A. N. McClymont and R. C. Canfield, Astrophys. J. 305, 936 (1986).CrossRefADSGoogle Scholar
  17. 17.
    D. B. Melrose, Astrophys. J. 381, 306 (1991).CrossRefADSGoogle Scholar
  18. 18.
    D. B. Melrose, Astrophys. J. 451, 391 (1995).CrossRefADSGoogle Scholar
  19. 19.
    J. A. Miller, P. J. Cargill, G. D. Holman, et al., J. Geophys. Res. 102, 14631 (1997).Google Scholar
  20. 20.
    E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985).Google Scholar
  21. 21.
    A. V. Stepanov, B. Kliem, V. V. Zaitsev, et al., Astron. Astrophys. 374, 1072 (2001).ADSGoogle Scholar
  22. 22.
    G. H. J. Van der Oord, Astron. Astrophys. 234, 496 (1990).ADSzbMATHGoogle Scholar
  23. 23.
    V. V. Zaitsev and M. L. Khodachenko, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 40, 176 (1997).Google Scholar
  24. 24.
    V. V. Zaitsev, A. G. Kislyakov, A. V. Stepanov, et al., Pis’ma Astron. Zh. 30, 362 (2004) [Astron. Lett. 30, 319 (2004)].Google Scholar
  25. 25.
    V. V. Zaitsev and A. V. Stepanov, Astron. Zh. 68, 384 (1991) [Sov. Astron. 35, 189 (1991)].ADSGoogle Scholar
  26. 26.
    V. V. Zaitsev and A. V. Stepanov, Sol. Phys. 139, 343 (1992).CrossRefADSGoogle Scholar
  27. 27.
    V. V. Zaitsev, A. V. Stepanov, S. Urpo, and S. Pohjolainen, Astron. Astrophys. 337, 887 (1998).ADSGoogle Scholar
  28. 28.
    V. V. Zaitsev, E. Ya. Zlotkin, and G. Aurass, Pis’ma Astron. Zh. 31, 315 (2005) [Astron. Lett. 31, 285 (2005)].Google Scholar
  29. 29.
    E. Ya. Zlotnik, V. V. Zaitsev, H. Aurass, et al., Astron. Astrophys. 410, 1011 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • V. V. Zaitsev
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations