Advertisement

Surface gravity waves in deep fluid at vertical shear flows

  • G. Gogoberidze
  • L. Samushia
  • G. D. Chagelishvili
  • J. G. Lominadze
  • W. Horton
Statistical, Nonlinear, and Soft Matter Physics

Abstract

Special features of surface gravity waves in a deep fluid flow with a constant vertical shear of velocity is studied. It is found that the mean flow velocity shear leads to a nontrivial modification of the dispersive characteristics of surface gravity wave modes. Moreover, the shear induces generation of surface gravity waves by internal vortex mode perturbations. The performed analytical and numerical study show that surface gravity waves are effectively generated by the internal perturbations at high shear rates. The generation is different for the waves propagating in the different directions. The generation of surface gravity waves propagating along the main flow considerably exceeds the generation of surface gravity waves in the opposite direction for relatively small shear rates, whereas the latter wave is generated more effectively for high shear rates. From the mathematical standpoint, the wave generation is caused by non-self-adjointness of the linear operators that describe the shear flow.

Keywords

Vortex Shear Flow Velocity Shear High Shear Rate Vertical Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kelvin, Philos. Mag. 42, 368 (1871).Google Scholar
  2. 2.
    P. O. Phillips, J. Fluid Mech. 2, 417 (1957).ADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    J. W. Miles, J. Fluid Mech. 3, 185 (1957).ADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    J. W. Miles, J. Fluid Mech. 6, 585 (1959).ADSGoogle Scholar
  5. 5.
    J. W. Miles, J. Fluid Mech. 10, 496 (1961).ADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    J. W. Miles, J. Fluid Mech. 13, 433 (1962).ADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    K. Kajiura, J. Oceanogr. Soc. Jpn. 18, 51 (1962).Google Scholar
  8. 8.
    K. Kajiura, J. Oceanogr. Soc. Jpn. 28, 32 (1972).Google Scholar
  9. 9.
    H. C. Kranzer and J. B. Keller, J. Appl. Phys. 30, 398 (1959).CrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Goldreich and D. Lynden-Bell, Mon. Not. R. Astron. Soc. 130, 125 (1965).ADSGoogle Scholar
  11. 11.
    W. O. Criminale and P. G. Drazin, Stud. Appl. Math. 83, 123 (1990).MathSciNetGoogle Scholar
  12. 12.
    G. D. Chagelishvili, A. D. Rogava, and D. G. Tsiklauri, Phys. Rev. E 53, 6028 (1996).CrossRefADSGoogle Scholar
  13. 13.
    S. J. Chapman, J. Fluid Mech. 451, 35 (2002).ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    G. D. Chagelishvili, A. G. Tevzadze, G. Bodo, and S. S. Moiseev, Phys. Rev. Lett. 79, 3178 (1997).CrossRefADSGoogle Scholar
  15. 15.
    G. D. Chagelishvili, R. G. Chanishvili, J. G. Lominadze, and A. G. Tevzadze, Phys. Plasmas 4, 259 (1997).ADSMathSciNetGoogle Scholar
  16. 16.
    A. D. Rogava, S. Poedts, and S. M. Mahajan, Astron. Astrophys. 354, 749 (2000).ADSGoogle Scholar
  17. 17.
    A. D. D. Craik, J. Fluid Mech. 37, 531 (1968).ADSGoogle Scholar
  18. 18.
    V. I. Shrira, J. Fluid Mech. 252, 565 (1993).ADSzbMATHMathSciNetGoogle Scholar
  19. 19.
    D. V. Chalikov, Dokl. Akad. Nauk SSSR 229, 1083 (1976).Google Scholar
  20. 20.
    D. V. Chalikov and V. K. Makin, Boundary-Layer Meteorol. 56, 83 (1991).CrossRefADSGoogle Scholar
  21. 21.
    J. P. Janssen, The Interaction of Ocean Waves and Wind (Cambridge Univ. Press, Cambridge, 2004).Google Scholar
  22. 22.
    V. E. Zakharov and N. N. Philonenko, Sov. Phys. Dokl. 11, 881 (1967).Google Scholar
  23. 23.
    S. A. Kitaigorodskii, J. Phys. Oceanogr. 13, 816 (1983).Google Scholar
  24. 24.
    V. E. Zakharov, Eur. J. Mech. B 18, 327 (1999).zbMATHGoogle Scholar
  25. 25.
    S. A. Kitaigorodskii and J. L. Lumley, J. Phys. Oceanogr. 13, 1977 (1983).Google Scholar
  26. 26.
    P. A. Chang, U. Piomelli, and W. K. Blake, Phys. Fluids 11, 3434 (1999).ADSGoogle Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 4th ed. (Nauka, Moscow, 1988; Pergamon, New York, 1987).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • G. Gogoberidze
    • 1
  • L. Samushia
    • 1
  • G. D. Chagelishvili
    • 1
  • J. G. Lominadze
    • 1
  • W. Horton
    • 2
  1. 1.Center for Plasma AstrophysicsAbastumani Astrophysical ObservatoryTbilisiGeorgia
  2. 2.Institute for Fusion StudiesThe University of Texas at AustinTexasUSA

Personalised recommendations