Stochastic modeling of coherent phenomena in strongly inhomogeneous media

  • V. L. Kuz’min
  • I. V. Meglinski
  • D. Yu. Churmakov
Atoms, Molecules, Optics

Abstract

A procedure of numerical simulation for coherent phenomena in multiply scattering media is developed on the basis of the juxtaposition of a Monte Carlo stochastic method with an iterative approach to the solution of the Bethe-Salpeter equation. The time correlation function and the interference component of coherent backscattering are calculated for scalar and electromagnetic fields. The results of simulation are in good agreement with experimental results, as well as with theoretical results obtained by generalizing the Milne solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ospeck and S. Fraden, Phys. Rev. E 49, 4578 (1994).CrossRefADSGoogle Scholar
  2. 2.
    T. Iwai, H. Furukawa, and T. Asakura, Opt. Rev. 2, 413 (1995).CrossRefGoogle Scholar
  3. 3.
    K. Ishii, T. Iwai, and T. Asakura, Opt. Rev. 4, 643 (1997).CrossRefGoogle Scholar
  4. 4.
    S. E. Skipetrov and S. S. Chesnokov, Kvantovaya Élektron. (Moscow) 25, 753 (1998).Google Scholar
  5. 5.
    R. Lenke and G. Maret, Eur. Phys. J. B 17, 171 (2000).CrossRefADSGoogle Scholar
  6. 6.
    S. E. Skipetrov and I. V. Meglinskii, Zh. Éksp. Teor. Fiz. 113, 1213 (1998) [JETP 86, 661 (1998)].Google Scholar
  7. 7.
    R. Lenke, R. Tweer, and G. Maret, J. Opt. A: Pure Appl. Opt. 4, 293 (2002).ADSGoogle Scholar
  8. 8.
    D. A. Zimnyakov, Yu. P. Sinichkin, I. V. Kiseleva, and D. N. Agafonov, Opt. Spektrosk. 92, 831 (2002) [Opt. Spectrosc. 92, 765 (2002)].Google Scholar
  9. 9.
    V. L. Kuz’min and I. V. Meglinskii, Pis’ma Zh. Éksp. Teor. Fiz. 79, 139 (2004) [JETP Lett. 79, 109 (2004)].Google Scholar
  10. 10.
    V. L. Kuz’min and I. V. Meglinskii, Opt. Spektrosk. 97, 108 (2004) [Opt. Spectrosc. 97, 100 (2004)].Google Scholar
  11. 11.
    B. A. van Tiggelen and S. E. Skipetrov, Wave Scattering in Complex Media: From Theory to Applications (Kluwer Academic, Dordrecht, 2003).Google Scholar
  12. 12.
    M. C. W. van Rossum and Th. N. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).ADSGoogle Scholar
  13. 13.
    I. M. Sobol’, The Monte Carlo Method (Nauka, Moscow, 1985) [in Russian].Google Scholar
  14. 14.
    P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).CrossRefADSGoogle Scholar
  15. 15.
    D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).CrossRefADSGoogle Scholar
  16. 16.
    F. C. MacKintosh and S. John, Phys. Rev. B 40, 2383 (1989).ADSGoogle Scholar
  17. 17.
    M. I. Mishchenko, Phys. Rev. B 44, 12597 (1991).Google Scholar
  18. 18.
    M. I. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 56, 673 (1996).CrossRefADSGoogle Scholar
  19. 19.
    E. Amic, J. M. Luck, and T. M. Nieuwenhuizen, J. Phys. I 7, 445 (1997).CrossRefGoogle Scholar
  20. 20.
    M. I. Mishchenko, J. M. Luck, and T. M. Nieuwenhuizen, J. Opt. Soc. Am. A 17, 888 (2000).ADSGoogle Scholar
  21. 21.
    V. L. Kuz’min, Opt. Spektrosk. 93, 482 (2002) [Opt. Spectrosc. 93, 439 (2002)].Google Scholar
  22. 22.
    V. L. Kuz’min and E. V. Aksenova, Zh. Éksp. Teor. Fiz. 123, 929 (2003) [JETP 96, 816 (2003)].Google Scholar
  23. 23.
    L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, et al., J. Opt. Soc. Am. A 21, 1799 (2004).CrossRefADSGoogle Scholar
  24. 24.
    E. Akkermans, P. E. Wolf, R. Maynard, et al., J. Phys. (Paris) 49, 77 (1988).ADSGoogle Scholar
  25. 25.
    Yu. N. Barabanenkov and V. D. Ozrin, Zh. Éksp. Teor. Fiz. 94(6), 56 (1988) [Sov. Phys. JETP 67, 1117 (1988)].ADSGoogle Scholar
  26. 26.
    I. V. Meglinskii and S. J. Matcher, Opt. Spektrosk. 91, 692 (2001) [Opt. Spectrosc. 91, 654 (2001)].Google Scholar
  27. 27.
    D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, Phys. Med. Biol. 47, 4271 (2002).CrossRefGoogle Scholar
  28. 28.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978; Mir, Moscow, 1981).Google Scholar
  29. 29.
    R. Lenke and G. Maret, Eur. Phys. J. B 17, 171 (2000).CrossRefADSGoogle Scholar
  30. 30.
    E. Tinet, S. Avrillier, and J. M. Tualle, J. Opt. Soc. Am. A 13, 1903 (1996).ADSGoogle Scholar
  31. 31.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., The Monte-Carlo Methods in Atmospheric Optics (Springer, Berlin, 1980).Google Scholar
  32. 32.
    G. Maret and P. E. Wolf, Physica B (Amsterdam) 65, 409 (1987).Google Scholar
  33. 33.
    A. Golubentsev, Zh. Éksp. Teor. Fiz. 86, 47 (1984) [Sov. Phys. JETP 59, 26 (1984)].ADSGoogle Scholar
  34. 34.
    M. J. Stephen, Phys. Rev. B 34, 7564 (1986).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • V. L. Kuz’min
    • 1
  • I. V. Meglinski
    • 2
    • 3
  • D. Yu. Churmakov
    • 3
  1. 1.St. Petersburg Institute of Trade and EconomicsSt. PetersburgRussia
  2. 2.Saratov State UniversitySaratovRussia
  3. 3.Cranfield University, School of EngineeringCranfieldUK

Personalised recommendations