Technical Physics Letters

, Volume 31, Issue 7, pp 560–563 | Cite as

Effect of the nanographite film thickness on the optical rectification pulse

  • G. M. Mikheev
  • R. G. Zonov
  • A. N. Obraztsov
  • A. P. Volkov
  • Yu. P. Svirko


The phenomenon of optical rectification during pulsed laser irradiation was studied in nanographite films of various thicknesses obtained by plasmachemical deposition on silicon substrates. The amplitude of the optical rectification pulse (ORP) strongly depends on the film thickness h and reaches a maximum at h ∼ 2.5 μm. At a smaller film thickness, the ORP is accompanied by a photoelectric signal of microsecond duration, which arises in the silicon substrate. For the nanographite films with h > 2.5 μm, the ORP is observed in the absence of any signal from the substrate, which allows such films to be used in fast-response detectors of pulsed laser radiation in a broad spectral range.


Radiation Silicon Pulse Laser Film Thickness Laser Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee W. Tutt and A. Kost, Nature 356, 225 (1992).CrossRefADSGoogle Scholar
  2. 2.
    L. Smilowitz, D. McBranch, V. Klimov, et al., Opt. Lett. 21, 922 (1996).ADSGoogle Scholar
  3. 3.
    H. I. Elim, W. Ji, G. H. Ma, et al., Appl. Phys. Lett. 85, 1799 (2004).CrossRefADSGoogle Scholar
  4. 4.
    G. X. Chen, M. N. Hong, Q. He, et al., Appl. Phys. A 79, 1079 (2004).ADSGoogle Scholar
  5. 5.
    N. N. Il’ichev, E. D. Obraztsova, S. V. Garnov, and S. E. Mosalaeva, Kvantovaya Élektron. (Moscow) 34, 572 (2004).Google Scholar
  6. 6.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. A. Svirko, Appl. Phys. Lett. 84, 4854 (2004).CrossRefADSGoogle Scholar
  7. 7.
    G. M. Mikheev, P. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Pis’ma Zh. Tekh. Fiz. 30(17), 88 (2004) [Tech. Phys. Lett. 30, 750 (2004)].Google Scholar
  8. 8.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, et al., Pis’ma Zh. Tekh. Fiz. 31(3), 11 (2005) [Tech. Phys. Lett. 31, 94 (2005)].Google Scholar
  9. 9.
    A. N. Obraztsov, A. P. Volkov, A. I. Boronin, et al., Zh. Éksp. Teor. Fiz. 120, 970 (2001) [JETP 93, 846 (2001)].Google Scholar
  10. 10.
    A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, et al., Carbon 41, 836 (2003).CrossRefGoogle Scholar
  11. 11.
    I. Yu. Pavlovskii and A. N. Obraztsov, Prib. Tekh. Éksp., No. 1, 152 (1998).Google Scholar
  12. 12.
    A. N. Obraztsov, I. Yu. Pavlovsky, A. P. Volkov, et al., Diamond Relat. Mater. 8, 814 (1999).Google Scholar
  13. 13.
    G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, Kvantovaya Élektron. (Moscow) 19, 45 (1992) [Sov. J. Quantum Electron. 22, 37 (1992)].Google Scholar
  14. 14.
    G. M. Mikheev, R. G. Zonov, D. G. Kalyuzhnyi, and A. Yu. Popov, Prib. Tekh. Éksp., No. 3, 164 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • G. M. Mikheev
    • 1
  • R. G. Zonov
    • 1
  • A. N. Obraztsov
    • 2
  • A. P. Volkov
    • 2
  • Yu. P. Svirko
    • 3
  1. 1.Institute of Applied Mechanics, Ural DivisionRussian Academy of SciencesIzhevsk, UdmurtiaRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Department of PhysicsJoensuu UniversityJoensuuFinland

Personalised recommendations