Advertisement

Semiconductors

, Volume 39, Issue 7, pp 795–799 | Cite as

The effects of interface states on the capacitance and electroluminescence efficiency of InGaN/GaN light-emitting diodes

  • N. I. Bochkareva
  • E. A. Zhirnov
  • A. A. Efremov
  • Yu. T. Rebane
  • R. I. Gorbunov
  • A. V. Klochkov
  • D. A. Lavrinovich
  • Yu. G. Shreter
Semiconductor Structures, Interfaces, and Surfaces

Abstract

The capacitance-voltage characteristics and external quantum efficiency of electroluminescence in blue GaN light-emitting diodes (LEDs) with an InGaN quantum well have been investigated in the temperature range 77–300 K. The results obtained are interpreted taking into account the effect of the InGaN/GaN interface states of structural defects and impurities on the capacitance of the GaN LEDs. The nonlinearity of the C−2(U) characteristics observed at low forward bias is attributed to an increase in the interface charge resulting from tunneling of free electrons and their trapping at the interface states. According to estimates, states with a density of about 3 × 1012 cm−2 are present at the interface. A recombination current in the interface region suppresses the injection of charge carriers into the quantum well and decreases the electroluminescence efficiency at high forward bias. Degradation of the optical power of the LEDs, accompanied by an increase in the measured capacitance, is attributed to an increase in the density of charged interface states and changes in their distribution in the band gap.

Keywords

Recombination Charge Carrier Electromagnetism Quantum Efficiency Interface Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Anderson, Solid-State Electron. 5, 341 (1962).CrossRefGoogle Scholar
  2. 2.
    Y. Zohta, H. Kuroda, R. Nii, and S. Nakamura, J. Cryst. Growth 189–190, 816 (1998).Google Scholar
  3. 3.
    O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 (1998).CrossRefADSGoogle Scholar
  4. 4.
    W. G. Oldham and A. G. Milnes, Solid-State Electron. 7, 153 (1964).CrossRefGoogle Scholar
  5. 5.
    J. P. Donnelly and A. G. Milnes, IEEE Trans. Electron Devices 14, 63 (1967).Google Scholar
  6. 6.
    J. Oila, K. Saarinen, A. E. Wickenden, et al., Appl. Phys. Lett. 82, 1021 (2003).ADSGoogle Scholar
  7. 7.
    K. S. A. Butcher, H. Timmers, Afifuddin, et al., J. Appl. Phys. 92, 3397 (2002).CrossRefADSGoogle Scholar
  8. 8.
    I. Arslan and N. D. Browning, Phys. Rev. Lett. 91, 165501 (2003).Google Scholar
  9. 9.
    J. Elsner, R. Jones, M. I. Heggie, et al., Phys. Rev. B 58, 12571 (1998).Google Scholar
  10. 10.
    T. Takeuchi, C. Wetzel, S. Yamaguchi, et al., Appl. Phys. Lett. 73, 1691 (1998).ADSGoogle Scholar
  11. 11.
    Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, et al., Proc. SPIE 4996, 113 (2003).Google Scholar
  12. 12.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 627 (2005) [Semiconductors 39, 594 (2005)].Google Scholar
  13. 13.
    J. S. Im, A. Moritz, F. Steuber, et al., Appl. Phys. Lett. 70, 631 (1997).ADSGoogle Scholar
  14. 14.
    G. Koley and M. G. Spencer, Appl. Phys. Lett. 78, 2873 (2001).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • E. A. Zhirnov
    • 2
  • A. A. Efremov
    • 3
  • Yu. T. Rebane
    • 1
  • R. I. Gorbunov
    • 1
  • A. V. Klochkov
    • 1
  • D. A. Lavrinovich
    • 1
  • Yu. G. Shreter
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of PhysicsBath UniversityBathUK
  3. 3.St. Petersburg State Technical UniversitySt. PetersburgRussia

Personalised recommendations